메뉴 건너뛰기




Volumn 15, Issue , 2011, Pages 173-181

Domain adaptation with coupled subspaces

Author keywords

[No Author keywords available]

Indexed keywords

DOMAIN ADAPTATION; ERROR BOUND; FINITE SAMPLES; LABELED DATA; NATURAL LANGUAGE PROCESSING; SOURCE DISTRIBUTION; SOURCE FEATURES; TARGET FEATURE; TRAINING DATA;

EID: 84862282850     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (75)

References (32)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:1817-1853, 2005.
    • (2005) JMLR , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 2
    • 70450128164 scopus 로고    scopus 로고
    • Two-view feature generation model for semi-supervised learning
    • R. Ando and T. Zhang. Two-view feature generation model for semi-supervised learning. In ICML, 2007.
    • (2007) ICML
    • Ando, R.1    Zhang, T.2
  • 3
    • 57749097129 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • A. Arygriou, C. Micchelli, M. Pontil, and Y. Yang. A spectral regularization framework for multi-task structure learning. In NIPS, 2007.
    • (2007) NIPS
    • Arygriou, A.1    Micchelli, C.2    Pontil, M.3    Yang, Y.4
  • 5
    • 36849053972 scopus 로고    scopus 로고
    • Discriminative learning for differing training and test distributions
    • S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training and test distributions. In ICML, 2007.
    • (2007) ICML
    • Bickel, S.1    Brückner, M.2    Scheffer, T.3
  • 7
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 8
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In EMNLP, 2006.
    • (2006) EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 11
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Hal Daumé, III. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Daumé III, H.1
  • 12
    • 79951490162 scopus 로고    scopus 로고
    • Online methods for multi-domain learning and adaptation
    • M. Dredze and K. Crammer. Online methods for multi-domain learning and adaptation. In EMNLP, 2008.
    • (2008) EMNLP
    • Dredze, M.1    Crammer, K.2
  • 13
    • 79959818548 scopus 로고    scopus 로고
    • Hierarchical Bayesian domain adaptation
    • Jenny Rose Finkel and Christopher D. Manning. Hierarchical bayesian domain adaptation. In NAACL, 2009.
    • (2009) NAACL
    • Finkel, J.R.1    Manning, C.D.2
  • 15
    • 77956206577 scopus 로고    scopus 로고
    • Model adaptation via model interpolation and boosting for web search ranking
    • Jianfeng Gao, QiangWu, Chris Burges, Krysta Svore, Yi Su, Nazan Khan, Shalin Shah, and Hongyan Zhou. Model adaptation via model interpolation and boosting for web search ranking. In EMNLP, 2009.
    • (2009) EMNLP
    • Gao, J.1    Wu, Q.2    Burges, C.3    Svore, K.4    Su, Y.5    Khan, N.6    Shah, S.7    Zhou, H.8
  • 16
    • 84863338511 scopus 로고    scopus 로고
    • Domain adaptation with latent semantic association for named entity recognition
    • Honglei Guo, Huijia Zhu, Zhili Guo, Xiaoxun Zhang, Xian Wu, and Zhong Su. Domain adaptation with latent semantic association for named entity recognition. In NAACL, 2009.
    • (2009) NAACL
    • Guo, H.1    Zhu, H.2    Guo, Z.3    Zhang, X.4    Wu, X.5    Su, Z.6
  • 18
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • J. Heckman. Sample selection bias as a specification error. Econometrica, 47:153-161, 1979.
    • (1979) Econometrica , vol.47 , pp. 153-161
    • Heckman, J.1
  • 19
    • 80053028502 scopus 로고    scopus 로고
    • Distributional representations for handling sparsity in supervised sequence-labeling
    • F. Huang and A. Yates. Distributional representations for handling sparsity in supervised sequence-labeling. In ACL, 2009.
    • (2009) ACL
    • Huang, F.1    Yates, A.2
  • 21
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation
    • J. Jiang and C. Zhai. Instance weighting for domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Jiang, J.1    Zhai, C.2
  • 23
    • 70450148854 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • S. Kakade and D. Foster. Multi-view regression via canonical correlation analysis. In COLT, 2007.
    • (2007) COLT
    • Kakade, S.1    Foster, D.2
  • 24
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 25
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • C. Legetter and P. Woodland. Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models. Computer Speech and Language, 9:171-185, 1995.
    • (1995) Computer Speech and Language , vol.9 , pp. 171-185
    • Legetter, C.1    Woodland, P.2
  • 26
    • 40049107811 scopus 로고    scopus 로고
    • Evigan: A hidden variable model for integrating gene evidence for eukaryotic gene prediction
    • Q. Liu, A. Mackey, D. Roos, and F. Pereira. Evigan: a hidden variable model for integrating gene evidence for eukaryotic gene prediction. Bioinformatics, 5:597-605, 2008.
    • (2008) Bioinformatics , vol.5 , pp. 597-605
    • Liu, Q.1    MacKey, A.2    Roos, D.3    Pereira, F.4
  • 27
    • 84898072330 scopus 로고    scopus 로고
    • Domain adaptation: Learning bounds and algorithms
    • Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In COLT, 2009.
    • (2009) COLT
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 28
  • 29
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The Penn Treebank
    • M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Computational Linguistics, 19:313-330, 1993.
    • (1993) Computational Linguistics , vol.19 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.3
  • 31
    • 85124016637 scopus 로고    scopus 로고
    • A maximum entropy model for partof- speech tagging
    • A. Ratnaparkhi. A maximum entropy model for partof- speech tagging. In EMNLP, 1996.
    • (1996) EMNLP
    • Ratnaparkhi, A.1
  • 32
    • 57349129298 scopus 로고    scopus 로고
    • Topic-bridged PLSA for cross-domain text classification
    • G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged plsa for cross-domain text classification. In SIGIR, 2008.
    • (2008) SIGIR
    • Xue, G.1    Dai, W.2    Yang, Q.3    Yu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.