메뉴 건너뛰기




Volumn 10, Issue 2, 2012, Pages 1098-1104

A novel optimization parameters of support vector machines model for the land use/ cover classification

Author keywords

Classification; Land use cover; Particle swarm optimization; Self adaptive mutation; Support vector machines

Indexed keywords

ACCURACY; ARTICLE; CLASSIFICATION ALGORITHM; LAND USE; PROCESS OPTIMIZATION; REMOTE SENSING; STATISTICAL MODEL; SUPPORT VECTOR MACHINE;

EID: 84862238988     PISSN: 14590255     EISSN: 14590263     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (32)
  • 2
    • 0030417439 scopus 로고    scopus 로고
    • Land resources survey by remote sensing and analysis of land carrying capacity for population in Tumen river region
    • Zhang, Y. Z., Chang, L. P., Zhang, B., Zhang, S. W., Huang, T. Q. and Liu, Y. Q. 1996. Land resources survey by remote sensing and analysis of land carrying capacity for population in Tumen river region. Chinese Geographical Science 6(4):342-350.
    • (1996) Chinese Geographical Science , vol.6 , Issue.4 , pp. 342-350
    • Zhang, Y.Z.1    Chang, L.P.2    Zhang, B.3    Zhang, S.W.4    Huang, T.Q.5    Liu, Y.Q.6
  • 3
    • 78649797191 scopus 로고    scopus 로고
    • A variable precision rough set approach to the remote sensing land use/cover classification
    • Pan, X., Zhang, S. Q. and Zhang, H. Q. 2010. A variable precision rough set approach to the remote sensing land use/cover classification. Computers & Geosciences 36:1466-1473.
    • (2010) Computers & Geosciences , vol.36 , pp. 1466-1473
    • Pan, X.1    Zhang, S.Q.2    Zhang, H.Q.3
  • 4
    • 35548963803 scopus 로고    scopus 로고
    • Quantifying land use change in Zhejiang coastal region, China using multi-temporal Landsat TM/ETM images
    • Ding, H., Wang, R. C., Wu, J. P., Zhou, B., Shi, Z. and Ding, L. X. 2007. Quantifying land use change in Zhejiang coastal region, China using multi-temporal Landsat TM/ETM images. Pedosphere 17(6):712-720.
    • (2007) Pedosphere , vol.17 , Issue.6 , pp. 712-720
    • Ding, H.1    Wang, R.C.2    Wu, J.P.3    Zhou, B.4    Shi, Z.5    Ding, L.X.6
  • 5
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • Bruzzone, L. and Prieto, D. F. 2001. Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 39(2):456-460.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 7
    • 0035248083 scopus 로고    scopus 로고
    • Pixel classication using variable string genetic algorithms with chromosome differentiation
    • Bandyopadhyay, S. and Pa, S.K. 2001. Pixel classication using variable string genetic algorithms with chromosome differentiation. IEEE Transactions on Geoscience and Remote Sensing. 39: 303-308.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing. , vol.39 , pp. 303-308
    • Bandyopadhyay, S.1    Pa, S.K.2
  • 8
    • 51749107722 scopus 로고    scopus 로고
    • Performance analysis of maximum likelihood and articial neural network classiers for training sets with mixed pixels
    • Kavzoglu, T. and Reis, S. 2008. Performance analysis of maximum likelihood and articial neural network classiers for training sets with mixed pixels. GIScience and Remote Sensing 45:330-342.
    • (2008) GIScience and Remote Sensing , vol.45 , pp. 330-342
    • Kavzoglu, T.1    Reis, S.2
  • 9
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating articial neural networks in land cover classification
    • Kavzoglu, T. and Mather, P. M. 2003. The use of backpropagating articial neural networks in land cover classification. International Journal of Remote Sensing 24(23):4907-4938.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.23 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 12
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M. and Mather, P. M. 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26:1007-1011.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 13
    • 42749086766 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem
    • Chi, M., Feng, R. and Bruzzone, L. 2008. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Advances in Space Research 41(11):1793-1799.
    • (2008) Advances in Space Research , vol.41 , Issue.11 , pp. 1793-1799
    • Chi, M.1    Feng, R.2    Bruzzone, L.3
  • 14
    • 57649135391 scopus 로고    scopus 로고
    • Genetic SVM approach to semisupervised multitemporal classification
    • Ghoggali, N. and Melgani, F. 2008. Genetic SVM approach to semisupervised multitemporal classification. IEEE Geoscience and Remote Sensing Letters 5(2):212-216.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.2 , pp. 212-216
    • Ghoggali, N.1    Melgani, F.2
  • 15
    • 34247346536 scopus 로고    scopus 로고
    • A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
    • Zhang, L., Huang, X., Huang, B. and Li, P. 2006. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing 44(10):2950-2961.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.10 , pp. 2950-2961
    • Zhang, L.1    Huang, X.2    Huang, B.3    Li, P.4
  • 16
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Tuia, D., Pacifici, F., Kanevski, M. and Emery, W. J. 2009. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Transactions on Geoscience and Remote Sensing 47(11):3866-3879.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 17
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Jae, H. M. and Young, C. L. 2005. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 28:603-614.
    • (2005) Expert Systems with Applications , vol.28 , pp. 603-614
    • Jae, H.M.1    Young, C.L.2
  • 19
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang, C. L. and Wang, C. J. 2006. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications 31:231-240.
    • (2006) Expert Systems with Applications , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 20
    • 77957910142 scopus 로고    scopus 로고
    • Application of the PSO-SVM model for recognition of control chart patterns
    • Vahid, R., Ata, E. and Reza, G. 2010. Application of the PSO-SVM model for recognition of control chart patterns. ISA Transactions 49: 577-586.
    • (2010) ISA Transactions , vol.49 , pp. 577-586
    • Vahid, R.1    Ata, E.2    Reza, G.3
  • 21
    • 77956619919 scopus 로고    scopus 로고
    • A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM
    • Wu, Q. 2011. A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM. Expert Systems with Applications 38:184-192.
    • (2011) Expert Systems with Applications , vol.38 , pp. 184-192
    • Wu, Q.1
  • 22
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • Huang, C. L. and Dun, J. F. 2008. A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing 8:1381-1391.
    • (2008) Applied Soft Computing , vol.8 , pp. 1381-1391
    • Huang, C.L.1    Dun, J.F.2
  • 23
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classication
    • Pal, M. and Mather, P. M. 2003. An assessment of the effectiveness of decision tree methods for land cover classication. Remote Sensing of Environment 86:554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 25
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification: Implications for training and classification users
    • Mathur, A. and Foody, G. M. 2008. Multiclass and binary SVM classification: Implications for training and classification users. IEEE Geoscience and Remote Sensing Letters 5:241-245.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , pp. 241-245
    • Mathur, A.1    Foody, G.M.2
  • 26
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Crammer, K. and Singer, Y. 2000. On the learnability and design of output codes for multiclass problems. Machine Learning 47:201-203.
    • (2000) Machine Learning , vol.47 , pp. 201-203
    • Crammer, K.1    Singer, Y.2
  • 27
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C. W. and Lin, C. J. 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13:415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 31
    • 3042594088 scopus 로고    scopus 로고
    • Particle swarm optimization with adaptive mutation
    • Lv, Z. S. and Hou, Z. R. 2004. Particle swarm optimization with adaptive mutation. Acta electronica sinica 32(3):416-420.
    • (2004) Acta electronica sinica , vol.32 , Issue.3 , pp. 416-420
    • Lv, Z.S.1    Hou, Z.R.2
  • 32
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational Psychological Measurement 20:37-46.
    • (1960) Educational Psychological Measurement , vol.20 , pp. 37-46
    • Cohen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.