메뉴 건너뛰기




Volumn 106, Issue 3-4, 2012, Pages 120-127

Gibbs distribution analysis of temporal correlations structure in retina ganglion cells

Author keywords

Gibbs distributions; Higher order correlation; Maximum entropy; Spike train analysis; Statistical physics

Indexed keywords

ANIMAL CELL; ANIMAL TISSUE; ARTICLE; CONTROLLED STUDY; GIBBS DISTRIBUTION ANALYSIS; HIDDEN MARKOV MODEL; NERVE CELL; NONHUMAN; RETINA; RETINA GANGLION CELL; SALAMANDER; SPATIOTEMPORAL SPIKE; SPIKE; STATISTICS; STIMULUS RESPONSE; VISUAL STIMULATION;

EID: 84862201186     PISSN: 09284257     EISSN: 17697115     Source Type: Journal    
DOI: 10.1016/j.jphysparis.2011.11.001     Document Type: Article
Times cited : (46)

References (44)
  • 1
    • 0023784456 scopus 로고
    • Detecting spatiotemporal firing patterns among simultaneously recorded single neurons
    • Abeles M., Gerstein G.L. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J. Neurophys. 1988, 60(3):909-924.
    • (1988) J. Neurophys. , vol.60 , Issue.3 , pp. 909-924
    • Abeles, M.1    Gerstein, G.L.2
  • 3
    • 84862182473 scopus 로고    scopus 로고
    • Information geometry of multiple spike trains
    • Springer, S. Grün, S. Rotter (Eds.) Analysis of Parallel Spike Trains
    • Amari S.-I. Information geometry of multiple spike trains. Springer Series in Computational Neuroscience, Part 11 2010, vol. 7:221-253. Springer. 10.1007/978-1-4419-5675. S. Grün, S. Rotter (Eds.).
    • (2010) Springer Series in Computational Neuroscience, Part 11 , vol.7 , pp. 221-253
    • Amari, S.-I.1
  • 4
    • 0003208028 scopus 로고
    • Equilibrium states and the ergodic theory of Anosov diffeomorphisms
    • Springer-Verlag, New York
    • Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lect. Notes Math. 1975, vol. 470. Springer-Verlag, New York.
    • (1975) Lect. Notes Math. , vol.470
    • Bowen, R.1
  • 5
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: state-of-the-art and future challenges
    • Brown E.N., Kass R.E., Mitra P.P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 2004, 7(5):456-461. . 10.1038/nn1228.
    • (2004) Nat. Neurosci. , vol.7 , Issue.5 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 6
    • 79956132400 scopus 로고    scopus 로고
    • A discrete time neural network model with spiking neurons II. Dynamics with noise
    • Cessac B. A discrete time neural network model with spiking neurons II. Dynamics with noise. J. Math. Biol. 2011, 62:863-900. http://lanl.arxiv.org/abs/1002.3275. 10.1007/s00285-010-0358-4.
    • (2011) J. Math. Biol. , vol.62 , pp. 863-900
    • Cessac, B.1
  • 7
    • 84862194349 scopus 로고    scopus 로고
    • Statistics of spike trains in conductance-based neural networks: rigorous results
    • Cessac B. Statistics of spike trains in conductance-based neural networks: rigorous results. J. Comput. Neurosci. 2011, 1(8). 10.1186/2190-8567-1-8.
    • (2011) J. Comput. Neurosci. , vol.1 , Issue.8
    • Cessac, B.1
  • 10
    • 79951967267 scopus 로고    scopus 로고
    • The architecture of functional interaction networks in the retina
    • Ganmor E., Segev R., Schneidman E. The architecture of functional interaction networks in the retina. J. Neurosci. 2011, 31(8):3044-3054.
    • (2011) J. Neurosci. , vol.31 , Issue.8 , pp. 3044-3054
    • Ganmor, E.1    Segev, R.2    Schneidman, E.3
  • 11
    • 79959354385 scopus 로고    scopus 로고
    • Sparse low-order interaction network underlies a highly correlated and learnable neural population code
    • Ganmor E., Segev R., Schneidman E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. PNAS 2011, 108(23):9679-9684.
    • (2011) PNAS , vol.108 , Issue.23 , pp. 9679-9684
    • Ganmor, E.1    Segev, R.2    Schneidman, E.3
  • 13
    • 45849099781 scopus 로고    scopus 로고
    • Estimating the entropy of binary time series: methodology, some theory and a simulation study
    • Gao Y., Kontoyiannis I., Bienenstock E. Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy 2008, 10(2):71-99.
    • (2008) Entropy , vol.10 , Issue.2 , pp. 71-99
    • Gao, Y.1    Kontoyiannis, I.2    Bienenstock, E.3
  • 14
    • 0003271843 scopus 로고
    • Gibbs Measures and Phase Transitions
    • Berlin; New York
    • Georgii, H.-O., 1988. Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, vol. 9, Berlin; New York.
    • (1988) De Gruyter Studies in Mathematics , vol.9
    • Georgii, H.-O.1
  • 15
    • 0024668120 scopus 로고
    • Estimating the information content of symbol sequences and efficient codes
    • Grassberger P. Estimating the information content of symbol sequences and efficient codes. IEEE Trans. Inform. Theory 1989, 35.
    • (1989) IEEE Trans. Inform. Theory , vol.35
    • Grassberger, P.1
  • 16
    • 0036134524 scopus 로고    scopus 로고
    • Unitary events in multiple single-neuron spiking activity: I. Detection and significance
    • Grün S., Diesmann M., Aertsen A. Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput. 2002, 14(1):43-80. 10.1162/089976602753284455.
    • (2002) Neural Comput. , vol.14 , Issue.1 , pp. 43-80
    • Grün, S.1    Diesmann, M.2    Aertsen, A.3
  • 17
    • 11944275853 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E. Information theory and statistical mechanics. Phys. Rev. 1957, 106(620).
    • (1957) Phys. Rev. , vol.106 , Issue.620
    • Jaynes, E.1
  • 18
    • 21544439557 scopus 로고    scopus 로고
    • Statistical issues in the analysis of neuronal data
    • Kass R.E., Ventura V., Brown E.N. Statistical issues in the analysis of neuronal data. J. Neurophys. 2005, 94(1):8-25. . 10.1152/jn.00648.2004.
    • (2005) J. Neurophys. , vol.94 , Issue.1 , pp. 8-25
    • Kass, R.E.1    Ventura, V.2    Brown, E.N.3
  • 20
    • 84862194673 scopus 로고    scopus 로고
    • Delayed feedback causes non-Markovian behavior of neuronal firing statistics
    • submitted for publication, arxiv:1012.6019
    • Kravchuk, K., Vidybida, A., 2010. Delayed feedback causes non-Markovian behavior of neuronal firing statistics. J. Phys. A., submitted for publication, arXiv:. arxiv:1012.6019.
    • (2010) J. Phys. A
    • Kravchuk, K.1    Vidybida, A.2
  • 21
    • 0030759967 scopus 로고    scopus 로고
    • Repeated patterns of distributed synchrony in neuronal assemblies
    • Lindsey B., Morris K., Shannon R., Gerstein G. Repeated patterns of distributed synchrony in neuronal assemblies. J. Neurophys. 1997, 78:1714-1719.
    • (1997) J. Neurophys. , vol.78 , pp. 1714-1719
    • Lindsey, B.1    Morris, K.2    Shannon, R.3    Gerstein, G.4
  • 22
    • 64649095157 scopus 로고    scopus 로고
    • Prediction of spatiotemporal patterns of neural activity from pairwise correlations
    • Marre O., Boustani S.E., Frégnac Y., Destexhe A. Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys. Rev. Lett. 2009, 102(13):4. 10.1103/PhysRevLett.102.138101.
    • (2009) Phys. Rev. Lett. , vol.102 , Issue.13 , pp. 4
    • Marre, O.1    Boustani, S.E.2    Frégnac, Y.3    Destexhe, A.4
  • 24
    • 52649121951 scopus 로고    scopus 로고
    • An asymptotic formula for the Neyman-Pearson risk in discriminating between two Markov chains
    • ISSN 1072-3374/1573-8795
    • Nagaev A.V. An asymptotic formula for the Neyman-Pearson risk in discriminating between two Markov chains. J. Math. Sci. 2002, 111(3):3582-3591. ISSN 1072-3374/1573-8795. 10.1023/A:1016151602853.
    • (2002) J. Math. Sci. , vol.111 , Issue.3 , pp. 3582-3591
    • Nagaev, A.V.1
  • 25
    • 77955172914 scopus 로고    scopus 로고
    • Sparse coding and high-order correlations in fine-scale cortical networks
    • Ohiorhenuan I.E., Mechler F., Purpura K.P., Schmid A.M., Hu Q., Victor J.D. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 2010, 466(7):617-621.
    • (2010) Nature , vol.466 , Issue.7 , pp. 617-621
    • Ohiorhenuan, I.E.1    Mechler, F.2    Purpura, K.P.3    Schmid, A.M.4    Hu, Q.5    Victor, J.D.6
  • 26
    • 79956083165 scopus 로고    scopus 로고
    • On Goodness of Fit Tests For Models of Neuronal Spike Trains Considered as Counting Processes
    • Pouzat, C., Chaffiol, A., 2009. On Goodness of Fit Tests For Models of Neuronal Spike Trains Considered as Counting Processes. http://arxiv.org/abs/0909.2785v1.
    • (2009)
    • Pouzat, C.1    Chaffiol, A.2
  • 27
    • 84929523735 scopus 로고    scopus 로고
    • Mean field theory for non-equilibrium network reconstruction
    • arxiv:1009.5946v1
    • Roudi, Y., Hertz, J., 2010. Mean field theory for non-equilibrium network reconstruction 11 arXiv:. arxiv:1009.5946v1.
    • (2010) , vol.11
    • Roudi, Y.1    Hertz, J.2
  • 28
    • 79251468767 scopus 로고    scopus 로고
    • Mean field theory for non-equilibrium network reconstruction
    • (048702), arxiv:1009.5946v1
    • Roudi, Y., Hertz, J., 2011. Mean field theory for non-equilibrium network reconstruction. Phys. Rev. Lett. 106 (048702), arXiv:. arxiv:1009.5946v1.
    • (2011) Phys. Rev. Lett , vol.106
    • Roudi, Y.1    Hertz, J.2
  • 30
  • 31
    • 84862190741 scopus 로고    scopus 로고
    • The Ising decoder: reading out the activity of large neural ensembles
    • arxiv:1009.1828
    • Schaub, M.T., Schultz, S.R., 2010. The Ising decoder: reading out the activity of large neural ensembles, arXiv:. arxiv:1009.1828.
    • (2010)
    • Schaub, M.T.1    Schultz, S.R.2
  • 32
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply string correlated network states in a neural population
    • Schneidman E., Berry M., Segev R., Bialek W. Weak pairwise correlations imply string correlated network states in a neural population. Nature 2006, 440:1007-1012.
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.2    Segev, R.3    Bialek, W.4
  • 33
    • 0040973114 scopus 로고    scopus 로고
    • Entropy estimation of symbol sequences
    • Schürmann T., Grassberger P. Entropy estimation of symbol sequences. Chaos 1996, 6(3):414-427.
    • (1996) Chaos , vol.6 , Issue.3 , pp. 414-427
    • Schürmann, T.1    Grassberger, P.2
  • 35
    • 16544386790 scopus 로고    scopus 로고
    • Recording spikes from a large fraction of the ganglion cells in a retinal patch
    • Segev R., Goodhouse J., Puchalla J., Berry M.J. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 2004, 7:1155-1162.
    • (2004) Nat. Neurosci. , vol.7 , pp. 1155-1162
    • Segev, R.1    Goodhouse, J.2    Puchalla, J.3    Berry, M.J.4
  • 38
    • 79251589964 scopus 로고    scopus 로고
    • How advances in neural recording affect data analysis
    • Stevenson I.H., Kording K.P. How advances in neural recording affect data analysis. Nat. Neurosci. 2011, 14(2).
    • (2011) Nat. Neurosci. , vol.14 , Issue.2
    • Stevenson, I.H.1    Kording, K.P.2
  • 41
    • 77950444572 scopus 로고    scopus 로고
    • Spin glass models for a network of real neurons
    • arxiv:0912.5409v1
    • Tkačik, G., Schneidman, E., Berry II, M.J., Bialek, W., 2009. Spin glass models for a network of real neurons 15, arXiv:. arxiv:0912.5409v1.
    • (2009) , vol.15
    • Tkačik, G.1    Schneidman, E.2    Berry II, M.J.3    Bialek, W.4
  • 42
    • 77956296601 scopus 로고    scopus 로고
    • Optimal population coding by noisy spiking neurons
    • Tkačik G., Prentice J.S., Balasubramanian V., Schneidman E. Optimal population coding by noisy spiking neurons. PNAS 2010, 107(32):14419-14424.
    • (2010) PNAS , vol.107 , Issue.32 , pp. 14419-14424
    • Tkačik, G.1    Prentice, J.S.2    Balasubramanian, V.3    Schneidman, E.4
  • 43
    • 84862194674 scopus 로고    scopus 로고
    • Entropy-based Parametric Estimation of Spike Train Statistics
    • INRIA Research Report
    • Vasquez, J.-C., Viéville, T., Cessac, B., 2010. Entropy-based Parametric Estimation of Spike Train Statistics, INRIA Research Report. http://arxiv.org/abs/1003.3157.
    • (2010)
    • Vasquez, J.-C.1    Viéville, T.2    Cessac, B.3
  • 44
    • 0033514474 scopus 로고    scopus 로고
    • Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task
    • Villa A.E.P., Tetko I.V., Hyland B., Najem A. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc. Natl. Acad. Sci. USA 1999, 96(3):1106-1111.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.3 , pp. 1106-1111
    • Villa, A.E.P.1    Tetko, I.V.2    Hyland, B.3    Najem, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.