메뉴 건너뛰기




Volumn , Issue , 2012, Pages 125-129

Offline handwritten English character recognition based on convolutional neural network

Author keywords

Convolutional Neural Networks; Error Correcting Code; Error Samples Reinforcement Learning; Handwritten English Character Recognition

Indexed keywords

CNN MODELS; CONVOLUTIONAL NEURAL NETWORK; DATA SETS; ERROR CORRECTING CODE; ERROR-SAMPLES-REINFORCEMENT-LEARNING; OFF-LINE HANDWRITTEN; RECOGNITION RATES;

EID: 84862104814     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DAS.2012.61     Document Type: Conference Paper
Times cited : (92)

References (16)
  • 3
    • 84945920014 scopus 로고    scopus 로고
    • Methods, reports and survey for the comparison of diverse isolated character recognition results on the unipen database
    • IEEE
    • E.H. Ratzlaff. Methods, reports and survey for the comparison of diverse isolated character recognition results on the unipen database. In Document Analysis and Recognition, 2003. Proceedings. Seventh International Conference on, pages 623-628. IEEE, 2003.
    • Document Analysis and Recognition, 2003. Proceedings. Seventh International Conference on , vol.2003 , pp. 623-628
    • Ratzlaff, E.H.1
  • 5
    • 12844271099 scopus 로고    scopus 로고
    • An intelligent offline handwriting recognition system using evolutionary neural learning algorithm and rule based over segmented data points
    • R. Ghosh and M. Ghosh. An intelligent offline handwriting recognition system using evolutionary neural learning algorithm and rule based over segmented data points. Journal of Research and Practice in Information Technology, 37(1):73-88, 2005.
    • (2005) Journal of Research and Practice in Information Technology , vol.37 , Issue.1 , pp. 73-88
    • Ghosh, R.1    Ghosh, M.2
  • 9
    • 33947170570 scopus 로고    scopus 로고
    • A trainable feature extractor for handwritten digit recognition
    • F. Lauer, C.Y. Suen, and G. Bloch. A trainable feature extractor for handwritten digit recognition. Pattern Recognition, 40(6):1816-1824, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.6 , pp. 1816-1824
    • Lauer, F.1    Suen, C.Y.2    Bloch, G.3
  • 11
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. Document Analysis and Recognition, 2:958, 2003.
    • (2003) Document Analysis and Recognition , vol.2 , pp. 958
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 12
    • 0029411630 scopus 로고
    • Lerec: A nn/hmm hybrid for on-line handwriting recognition
    • Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A nn/hmm hybrid for on-line handwriting recognition. Neural Computation, 7(6):1289-1303, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1289-1303
    • Bengio, Y.1    LeCun, Y.2    Nohl, C.3    Burges, C.4
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.