메뉴 건너뛰기




Volumn 52, Issue 4, 2012, Pages 901-912

Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors

Author keywords

[No Author keywords available]

Indexed keywords

DISSECTION; DRUG INTERACTIONS;

EID: 84862018569     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci200607f     Document Type: Article
Times cited : (52)

References (58)
  • 1
    • 0037032835 scopus 로고    scopus 로고
    • The protein kinase complement of the human genome
    • DOI 10.1126/science.1075762
    • Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912-1934. (Pubitemid 35425239)
    • (2002) Science , vol.298 , Issue.5600 , pp. 1912-1934
    • Manning, G.1    Whyte, D.B.2    Martinez, R.3    Hunter, T.4    Sudarsanam, S.5
  • 3
    • 20444498116 scopus 로고    scopus 로고
    • Kinomics: Characterizing the therapeutically validated kinase space
    • DOI 10.1016/S1359-6446(05)03477-X, PII S135964460503477X
    • Vieth, M.; Sutherland, J. J.; Robertson, D. H.; Campbell, R. M. Kinomics: characterizing the therapeutically validated kinase space. Drug Discovery Today 2005, 10, 839-846. (Pubitemid 40824738)
    • (2005) Drug Discovery Today , vol.10 , Issue.12 , pp. 839-846
    • Vieth, M.1    Sutherland, J.J.2    Robertson, D.H.3    Campbell, R.M.4
  • 4
    • 57749188299 scopus 로고    scopus 로고
    • Targeting cancer with small molecule kinase inhibitors
    • Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28-39.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 28-39
    • Zhang, J.1    Yang, P.L.2    Gray, N.S.3
  • 6
    • 75149130051 scopus 로고    scopus 로고
    • Targeting the cancer kinome through polypharmacology
    • Knight, Z. A.; Lin, H.; Shokat, K. M. Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer 2010, 10, 130-137.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 130-137
    • Knight, Z.A.1    Lin, H.2    Shokat, K.M.3
  • 8
    • 57149144946 scopus 로고    scopus 로고
    • Strategies for the design of selective protein kinase inhibitors
    • Sawa, M. Strategies for the design of selective protein kinase inhibitors. Mini-Rev. Med. Chem. 2008, 8, 1291-1297.
    • (2008) Mini-Rev. Med. Chem. , vol.8 , pp. 1291-1297
    • Sawa, M.1
  • 12
    • 38049018155 scopus 로고    scopus 로고
    • A quantitative analysis of kinase inhibitor selectivity
    • Karaman, M. W.; et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127-132.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 127-132
    • Karaman, M.W.1
  • 13
    • 58149102549 scopus 로고    scopus 로고
    • Assessment of chemical coverage of kinome space and its implications for kinase drug discovery
    • Bamborough, P.; Drewry, D.; Harper, G.; Smith, G. K.; Schneider, K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem. 2008, 51, 7898-7914.
    • (2008) J. Med. Chem. , vol.51 , pp. 7898-7914
    • Bamborough, P.1    Drewry, D.2    Harper, G.3    Smith, G.K.4    Schneider, K.5
  • 14
    • 42949088496 scopus 로고    scopus 로고
    • Chemical fragments as foundations for understanding target space and activity prediction
    • DOI 10.1021/jm701399f
    • Sutherland, J. J.; Higgs, R. E.; Watson, I.; Vieth, M. Chemical fragments as foundations for understanding target space and activity prediction. J. Med. Chem. 2008, 51, 2689-2700. (Pubitemid 351620791)
    • (2008) Journal of Medicinal Chemistry , vol.51 , Issue.9 , pp. 2689-2700
    • Sutherland, J.J.1    Higgs, R.E.2    Watson, I.3    Vieth, M.4
  • 15
    • 70350046704 scopus 로고    scopus 로고
    • Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches
    • Vieth, M.; Erickson, J.; Wang, J.; Webster, Y.; Mader, M.; Higgs, R.; Watson, I. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches. J. Med. Chem. 2009, 52, 6456-6466.
    • (2009) J. Med. Chem. , vol.52 , pp. 6456-6466
    • Vieth, M.1    Erickson, J.2    Wang, J.3    Webster, Y.4    Mader, M.5    Higgs, R.6    Watson, I.7
  • 17
    • 68949147006 scopus 로고    scopus 로고
    • Measuring and interpreting the selectivity of protein kinase inhibitors
    • Smyth, L.; Collins, I. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol. 2009, 2, 131-151.
    • (2009) J. Chem. Biol. , vol.2 , pp. 131-151
    • Smyth, L.1    Collins, I.2
  • 18
    • 42949150113 scopus 로고    scopus 로고
    • High-throughput kinase profiling as a platform for drug discovery
    • DOI 10.1038/nrd2541, PII NRD2541
    • Goldstein, D. M.; Gray, N. S.; Zarrinkar, P. P. High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discovery 2008, 7, 391-397. (Pubitemid 351619111)
    • (2008) Nature Reviews Drug Discovery , vol.7 , Issue.5 , pp. 391-397
    • Goldstein, D.M.1    Gray, N.S.2    Zarrinkar, P.P.3
  • 19
    • 57649131066 scopus 로고    scopus 로고
    • Prediction of specificitydetermining residues for small-molecule kinase inhibitors
    • Caffrey, D.; Lunney, E.; Moshinsky, D. Prediction of specificitydetermining residues for small-molecule kinase inhibitors. BMC Bioinf. 2008, 9, 491.
    • (2008) BMC Bioinf. , vol.9 , pp. 491
    • Caffrey, D.1    Lunney, E.2    Moshinsky, D.3
  • 20
    • 56049119878 scopus 로고    scopus 로고
    • In silico drug profiling of the human kinome based on a molecular marker for cross reactivity
    • Zhang, X.; Fernandez, A. In silico drug profiling of the human kinome based on a molecular marker for cross reactivity. Mol. Pharm. 2008, 5, 728-738.
    • (2008) Mol. Pharm. , vol.5 , pp. 728-738
    • Zhang, X.1    Fernandez, A.2
  • 22
    • 69549121940 scopus 로고    scopus 로고
    • QSAR models for predicting the similarity in binding profiles for pairs of protein kinases and the variation of models between experimental data sets
    • Sheridan, R. P.; Nam, K.; Maiorov, V. N.; McMasters, D. R.; Cornell, W. D. QSAR models for predicting the similarity in binding profiles for pairs of protein kinases and the variation of models between experimental data sets. J. Chem. Inf. Model. 2009, 49, 1974-1985.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1974-1985
    • Sheridan, R.P.1    Nam, K.2    Maiorov, V.N.3    McMasters, D.R.4    Cornell, W.D.5
  • 23
    • 77953665615 scopus 로고    scopus 로고
    • Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques
    • Lapins, M.; Wikberg, J. Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques. BMC Bioinf. 2010, 11, 339.
    • (2010) BMC Bioinf. , vol.11 , pp. 339
    • Lapins, M.1    Wikberg, J.2
  • 24
    • 77957730447 scopus 로고    scopus 로고
    • Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines
    • Ma, X. H.; Wang, R.; Tan, C. Y.; Jiang, Y. Y.; Lu, T.; Rao, H. B.; Li, X. Y.; Go, M. L.; Low, B. C.; Chen, Y. Z. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines. Mol. Pharm. 2010, 7, 1545-1560.
    • (2010) Mol. Pharm. , vol.7 , pp. 1545-1560
    • Ma, X.H.1    Wang, R.2    Tan, C.Y.3    Jiang, Y.Y.4    Lu, T.5    Rao, H.B.6    Li, X.Y.7    Go, M.L.8    Low, B.C.9    Chen, Y.Z.10
  • 25
    • 64349099558 scopus 로고    scopus 로고
    • Kinase domain mutations in cancer: Implications for small molecule drug design strategies
    • Bikker, J. A.; Brooijmans, N.; Wissner, A.; Mansour, T. S. Kinase domain mutations in cancer: implications for small molecule drug design strategies. J. Med. Chem. 2009, 52, 1493-1509.
    • (2009) J. Med. Chem. , vol.52 , pp. 1493-1509
    • Bikker, J.A.1    Brooijmans, N.2    Wissner, A.3    Mansour, T.S.4
  • 26
    • 84862014548 scopus 로고    scopus 로고
    • European Bioinformatics Institute
    • Kinase SARfari.; European Bioinformatics Institute, 2011.
    • (2011) Kinase SARfari
  • 27
    • 77950473958 scopus 로고    scopus 로고
    • Kinase selectivity potential for inhibitors targeting the ATP binding site: A network analysis
    • Huang, D.; Zhou, T.; Lafleur, K.; Nevado, C.; Caflisch, A. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics 2010, 26, 198-204.
    • (2010) Bioinformatics , vol.26 , pp. 198-204
    • Huang, D.1    Zhou, T.2    Lafleur, K.3    Nevado, C.4    Caflisch, A.5
  • 28
    • 33747816816 scopus 로고    scopus 로고
    • PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • DOI 10.1093/nar/gkl305
    • Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2006, 34, W32-W37. (Pubitemid 44529730)
    • (2006) Nucleic Acids Research , vol.34 , Issue.WEB. SERV. ISS.
    • Li, Z.R.1    Lin, H.H.2    Han, L.Y.3    Jiang, L.4    Chen, X.5    Chen, Y.Z.6
  • 29
    • 0032058905 scopus 로고    scopus 로고
    • RECAP - Retrosynthetic Combinatorial Analysis Procedure: A powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry
    • Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M. RECAP-Retrosynthetic Combinatorial Analysis Procedure: powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511-522. (Pubitemid 128594467)
    • (1998) Journal of Chemical Information and Computer Sciences , vol.38 , Issue.3 , pp. 511-522
    • Lewell, X.Q.1    Judd, D.B.2    Watson, S.P.3    Hann, M.M.4
  • 30
    • 58149092163 scopus 로고    scopus 로고
    • CREDO: A protein-ligand interaction database for drug discovery
    • Schreyer, A.; Blundell, T. CREDO: a protein-ligand interaction database for drug discovery. Chem. Biol. Drug Des. 2009, 73, 157-167.
    • (2009) Chem. Biol. Drug Des. , vol.73 , pp. 157-167
    • Schreyer, A.1    Blundell, T.2
  • 33
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742-754.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 34
    • 0346962971 scopus 로고    scopus 로고
    • Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimensional Protein-Ligand Binding Interactions
    • DOI 10.1021/jm030331x
    • Deng, Z.; Chuaqui, C.; Singh, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem. 2004, 47, 337-344. (Pubitemid 38057878)
    • (2004) Journal of Medicinal Chemistry , vol.47 , Issue.2 , pp. 337-344
    • Deng, Z.1    Chuaqui, C.2    Singh, J.3
  • 35
    • 33745095576 scopus 로고    scopus 로고
    • Structural interaction fingerprints: A new approach to organizing, mining, analyzing, and designing protein-small molecule complexes
    • DOI 10.1111/j.1747-0285.2005.00323.x
    • Singh, J.; Deng, Z.; Narale, G.; Chuaqui, C. Structural interaction fingerprints: a new approach to organizing, mining, analyzing, and designing protein-small molecule complexes. Chem. Biol. Drug Des. 2006, 67, 5-12. (Pubitemid 43881383)
    • (2006) Chemical Biology and Drug Design , vol.67 , Issue.1 , pp. 5-12
    • Singh, J.1    Deng, Z.2    Narale, G.3    Chuaqui, C.4
  • 36
    • 66149131771 scopus 로고    scopus 로고
    • Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: Application to G protein-coupled receptors and their ligands
    • Weill, N.; Rognan, D. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands. J. Chem. Inf. Model. 2009, 49, 1049-1062.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1049-1062
    • Weill, N.1    Rognan, D.2
  • 37
    • 77954249073 scopus 로고    scopus 로고
    • SiMMap: A web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties
    • Chen, Y.-F.; Hsu, K.-C.; Lin, S.-R.; Wang, W.-C.; Huang, Y.-C.; Yang, J.-M. SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res. 2010, 38, W424-W430.
    • (2010) Nucleic Acids Res. , vol.38
    • Chen, Y.-F.1    Hsu, K.-C.2    Lin, S.-R.3    Wang, W.-C.4    Huang, Y.-C.5    Yang, J.-M.6
  • 38
    • 66849121861 scopus 로고    scopus 로고
    • Bayesian modeling in virtual high throughput screening
    • Klon, A. E. Bayesian modeling in virtual high throughput screening. Comb. Chem. High Throughput Screening 2009, 12, 469-483.
    • (2009) Comb. Chem. High Throughput Screening , vol.12 , pp. 469-483
    • Klon, A.E.1
  • 39
    • 79952117092 scopus 로고    scopus 로고
    • Chemoinformatics and computational chemical biology
    • Bender, A. Chemoinformatics and computational chemical biology. Methods Mol. Biol. 2011, 672, 175-196.
    • (2011) Methods Mol. Biol. , vol.672 , pp. 175-196
    • Bender, A.1
  • 40
    • 4143122120 scopus 로고    scopus 로고
    • Classification of kinase inhibitors using a Bayesian model
    • DOI 10.1021/jm0303195
    • Xia, X.; Maliski, E. G.; Gallant, P.; Rogers, D. Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 2004, 47, 4463-4470. (Pubitemid 39096834)
    • (2004) Journal of Medicinal Chemistry , vol.47 , Issue.18 , pp. 4463-4470
    • Xia, X.1    Maliski, E.G.2    Gallant, P.3    Rogers, D.4
  • 41
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases
    • DOI 10.1021/ci060003g
    • Nidhi; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 2006, 46, 1124-1133. (Pubitemid 43999157)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.3 , pp. 1124-1133
    • Nidhi1    Glick, M.2    Davies, J.W.3    Jenkins, J.L.4
  • 44
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob, L.; Vert, J.-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 2008, 24, 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2
  • 45
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann, A. M.; Geppert, H.; Bajorath, J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model. 2009, 49, 582-592.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 46
    • 23844480138 scopus 로고    scopus 로고
    • Graph kernels for chemical informatics
    • DOI 10.1016/j.neunet.2005.07.009, PII S0893608005001693, Neural Networks and Kernal Methods for Structured Domains
    • Ralaivola, L.; Swamidass, S. J.; Saigo, H.; Baldi, P. Graph kernels for chemical informatics. Neural Networks 2005, 18, 1093-1110. (Pubitemid 41476343)
    • (2005) Neural Networks , vol.18 , Issue.8 , pp. 1093-1110
    • Ralaivola, L.1    Swamidass, S.J.2    Saigo, H.3    Baldi, P.4
  • 49
    • 38849163717 scopus 로고    scopus 로고
    • Glycosylation site prediction using ensembles of support vector machine classifiers
    • Caragea, C.; Sinapov, J.; Silvescu, A.; Dobbs, D.; Honavar, V. Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinf. 2007, 8, 438.
    • (2007) BMC Bioinf. , vol.8 , pp. 438
    • Caragea, C.1    Sinapov, J.2    Silvescu, A.3    Dobbs, D.4    Honavar, V.5
  • 50
    • 77649234126 scopus 로고    scopus 로고
    • Lysine acetylation sites prediction using an ensemble of support vector machine classifiers
    • Xu, Y.; Wang, X.-B.; Ding, J.; Wu, L.-Y.; Deng, N.-Y. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J. Theor. Biol. 2010, 264, 130-135.
    • (2010) J. Theor. Biol. , vol.264 , pp. 130-135
    • Xu, Y.1    Wang, X.-B.2    Ding, J.3    Wu, L.-Y.4    Deng, N.-Y.5
  • 51
    • 40649086418 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • DOI 10.1016/j.neucom.2007.04.010, PII S0925231207001439
    • Lauer, F.; Bloch, G. Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing 2008, 71, 1578-1594. (Pubitemid 351373181)
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1578-1594
    • Lauer, F.1    Bloch, G.2
  • 52
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • Frey, B. J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972-976. (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 53
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs-Why QSAR often disappoints
    • Maggiora, G. M. On outliers and activity cliffs-Why QSAR often disappoints. J. Chem. Inf. Model. 2006, 46, 1535-1535.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1535-1535
    • Maggiora, G.M.1
  • 54
    • 39449135396 scopus 로고    scopus 로고
    • The trouble with QSAR (or how i learned to stop worrying and embrace fallacy)
    • DOI 10.1021/ci700332k
    • Johnson, S. R. The trouble with QSAR (or How I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 2008, 48, 25-26. (Pubitemid 351271047)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.1 , pp. 25-26
    • Johnson, S.R.1
  • 55
    • 79953823573 scopus 로고    scopus 로고
    • Why QSAR fails: An empirical evaluation using conventional computational approach
    • Huang, J.; Fan, X. Why QSAR fails: an empirical evaluation using conventional computational approach. Mol. Pharm. 2011, 8, 600-608.
    • (2011) Mol. Pharm. , vol.8 , pp. 600-608
    • Huang, J.1    Fan, X.2
  • 56
    • 42749092988 scopus 로고    scopus 로고
    • The importance of the domain of applicability in QSAR modeling
    • Weaver, S.; Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graphics Modell. 2008, 26, 1315-1326.
    • (2008) J. Mol. Graphics Modell. , vol.26 , pp. 1315-1326
    • Weaver, S.1    Gleeson, M.P.2
  • 58
    • 79956124247 scopus 로고    scopus 로고
    • An active role for machine learning in drug development
    • Murphy, R. F. An active role for machine learning in drug development. Nat. Chem. Biol. 2011, 7, 327-330.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 327-330
    • Murphy, R.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.