메뉴 건너뛰기




Volumn 31, Issue 14, 2012, Pages 1464-1474

L 1 penalized continuation ratio models for ordinal response prediction using high-dimensional datasets

Author keywords

Continuation ratio; Gene expression analysis; L 1 penalization; Microarray; Ordinal response

Indexed keywords

AKAIKE INFORMATION CRITERION; ARTICLE; BAYESIAN INFORMATION CRITERION; GENE EXPRESSION; L1 PENALIZED CONTINUATION RATIO MODEL; MICROARRAY ANALYSIS; ORDINAL RESPONSE; PREDICTION; PREDICTOR VARIABLE; SAMPLE SIZE; SIMULATION; STATISTICAL CONCEPTS; STATISTICAL MODEL; BLOOD; COMPUTER SIMULATION; CROHN DISEASE; GENE EXPRESSION PROFILING; GLUCOSE BLOOD LEVEL; HUMAN; MALE; METABOLISM; NON INSULIN DEPENDENT DIABETES MELLITUS; PROSTATE TUMOR; STATISTICAL ANALYSIS; STATISTICS; ULCERATIVE COLITIS;

EID: 84862002828     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4484     Document Type: Article
Times cited : (44)

References (33)
  • 1
    • 34248355069 scopus 로고    scopus 로고
    • Liver biopsy assessment in chronic viral hepatitis: a personal, practical approach
    • Theise ND. Liver biopsy assessment in chronic viral hepatitis: a personal, practical approach. Modern Pathology 2007; 20 Suppl 1:S3-S14.
    • (2007) Modern Pathology , Issue.20 SUPPL. 1
    • Theise, N.D.1
  • 4
    • 17444374677 scopus 로고    scopus 로고
    • Differential gene expression detection using penalized linear regression models: the improved SAM statistics
    • Wu B. Differential gene expression detection using penalized linear regression models: the improved SAM statistics. Bioinformatics 2005; 21:1565-1571.
    • (2005) Bioinformatics , vol.21 , pp. 1565-1571
    • Wu, B.1
  • 5
    • 32544452740 scopus 로고    scopus 로고
    • Differential gene expression detection and sample classification using penalized linear regression models
    • Wu B. Differential gene expression detection and sample classification using penalized linear regression models. Bioinformatics 2006; 22:472-476.
    • (2006) Bioinformatics , vol.22 , pp. 472-476
    • Wu, B.1
  • 6
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics 2004; 5:427-443.
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 7
    • 11144270164 scopus 로고    scopus 로고
    • Penalized binary regression for gene expression profiling
    • Schimek MG. Penalized binary regression for gene expression profiling. Methods of Information in Medicine 2004; 43:439-444.
    • (2004) Methods of Information in Medicine , vol.43 , pp. 439-444
    • Schimek, M.G.1
  • 8
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher M, Binde H, Gerds T. Assessment of survival prediction models based on microarray data. Bioinformatics 2007; 23:1768-1774.
    • (2007) Bioinformatics , vol.23 , pp. 1768-1774
    • Schumacher, M.1    Binde, H.2    Gerds, T.3
  • 9
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005; 21:3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 10
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li H, Gui J. Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 2004; 20 Suppl 1:i208-i215.
    • (2004) Bioinformatics , Issue.20 SUPPL. 1
    • Li, H.1    Gui, J.2
  • 12
    • 44249109682 scopus 로고    scopus 로고
    • A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations
    • Kiiveri HT. A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations. BMC Bioinformatics 2008; 9:195.
    • (2008) BMC Bioinformatics , vol.9 , pp. 195
    • Kiiveri, H.T.1
  • 14
    • 0035709366 scopus 로고    scopus 로고
    • Regression models for unconstrained, partially or fully constrained continuation odds ratios
    • Cole SR, Ananth CV. Regression models for unconstrained, partially or fully constrained continuation odds ratios. International Journal of Epidemiology 2001; 30:1379-1382.
    • (2001) International Journal of Epidemiology , vol.30 , pp. 1379-1382
    • Cole, S.R.1    Ananth, C.V.2
  • 15
    • 0028129341 scopus 로고
    • Alternative models for ordinal logistic regression
    • Greenland S. Alternative models for ordinal logistic regression. Statistics in Medicine 1994; 13:1665-1677.
    • (1994) Statistics in Medicine , vol.13 , pp. 1665-1677
    • Greenland, S.1
  • 16
    • 0040784343 scopus 로고    scopus 로고
    • Calculating ordinal regression models in SAS and S-Plus
    • Bender R, Benner A. Calculating ordinal regression models in SAS and S-Plus. Biometrical Journal 2000; 42:677-699.
    • (2000) Biometrical Journal , vol.42 , pp. 677-699
    • Bender, R.1    Benner, A.2
  • 17
    • 0023850315 scopus 로고
    • Multinomial regression models based on continuation ratios
    • Cox C. Multinomial regression models based on continuation ratios. Statistics in Medicine 1988; 7:435-441.
    • (1988) Statistics in Medicine , vol.7 , pp. 435-441
    • Cox, C.1
  • 19
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine 1997; 16:385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 22
    • 84862015008 scopus 로고    scopus 로고
    • lasso2: L1 constrained estimation aka 'lasso', Date accessed Janaurary 10, 2011.
    • Lokhorst J, Venables B, Turlach B, Maechler M. lasso2: L1 constrained estimation aka 'lasso', 2010., Date accessed Janaurary 10, 2011.
    • (2010)
    • Lokhorst, J.1    Venables, B.2    Turlach, B.3    Maechler, M.4
  • 23
    • 70149113077 scopus 로고    scopus 로고
    • R Core Development Team. R Foundation for Statistical Computing: Vienna, Austria
    • R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2009.
    • (2009) R: A Language and Environment for Statistical Computing
  • 26
    • 65249115914 scopus 로고    scopus 로고
    • A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1
    • Noguchi E, Homma Y, Kang X, Netea MG, Ma X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nature Immunology 2009; 10:471-479.
    • (2009) Nature Immunology , vol.10 , pp. 471-479
    • Noguchi, E.1    Homma, Y.2    Kang, X.3    Netea, M.G.4    Ma, X.5
  • 30
    • 0031463463 scopus 로고    scopus 로고
    • Regression models for ordinal responses: a review of methods and applications
    • Ananth CV, Kleinbaum DG. Regression models for ordinal responses: a review of methods and applications. International Journal of Epidemiology 1997; 26:1323-1333.
    • (1997) International Journal of Epidemiology , vol.26 , pp. 1323-1333
    • Ananth, C.V.1    Kleinbaum, D.G.2
  • 31
    • 0031729698 scopus 로고    scopus 로고
    • The analysis of ordinal response data in the behavioural sciences
    • Thomson D, Furness RW, Monaghan P. The analysis of ordinal response data in the behavioural sciences. Animal Behaviour 1998; 56:1041-1043.
    • (1998) Animal Behaviour , vol.56 , pp. 1041-1043
    • Thomson, D.1    Furness, R.W.2    Monaghan, P.3
  • 32
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    • Cawley G, Talbot N. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 2006; 22:2348-2355.
    • (2006) Bioinformatics , vol.22 , pp. 2348-2355
    • Cawley, G.1    Talbot, N.2
  • 33
    • 84862015007 scopus 로고    scopus 로고
    • Note
    • CSIRO Bioinformatics. HGfns: Sparse model fitting, 2010. R package version 3.0.8.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.