-
1
-
-
78649739281
-
-
eds., Springer Verlag, New York
-
F. Brauer, L. Allen, P. van den Driessche and J. Wu (eds.), Mathematical epidemiology, Lecture Notes in Mathematics vol. 1945, Springer Verlag, New York, 2008.
-
(2008)
Mathematical Epidemiology, Lecture Notes in Mathematics
, vol.1945
-
-
Brauer, F.1
Allen, L.2
Van Den Driessche, P.3
Wu, J.4
-
3
-
-
0030882301
-
Backward bifurcation in epidemic control
-
DOI 10.1016/S0025-5564(97)00027-8, PII S0025556497000278
-
K.P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146:15-35, 1997. (Pubitemid 27452465)
-
(1997)
Mathematical Biosciences
, vol.146
, Issue.1
, pp. 15-35
-
-
Hadeler, K.P.1
Van Den, D.P.2
-
4
-
-
0000802631
-
Persistence in infinite-dimensional systems
-
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20:388-395, 1989.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 388-395
-
-
Hale, J.K.1
Waltman, P.2
-
5
-
-
77954623221
-
Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate
-
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, Bull. Math. Biol, 72:1192-1207, 2010.
-
(2010)
Bull. Math. Biol
, vol.72
, pp. 1192-1207
-
-
Huang, G.1
Takeuchi, Y.2
Ma, W.3
Wei, D.4
-
6
-
-
0032812296
-
Global dynamics of a SEIR model with varying total population size
-
DOI 10.1016/S0025-5564(99)00030-9, PII S0025556499000309
-
M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160:191-213, 1999. (Pubitemid 29398860)
-
(1999)
Mathematical Biosciences
, vol.160
, Issue.2
, pp. 191-213
-
-
Li, M.Y.1
Graef, J.R.2
Wang, L.3
Karsai, J.4
-
7
-
-
0028817626
-
Global stability for the SEIR model in epidemiology
-
M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 12:155 164, 1995.
-
(1995)
Math. Biosci.
, vol.12
, pp. 155164
-
-
Li, M.Y.1
Muldowney, J.S.2
-
8
-
-
34548816975
-
Global stability for a class of mass action systems allowing for latency in tuberculosis
-
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Anal. Appl, 338:518 535, 2008.
-
(2008)
J. Math. Anal. Appl
, vol.338
, pp. 518535
-
-
McCluskey, C.C.1
-
9
-
-
41949132407
-
Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model
-
DOI 10.1016/j.apm.2007.03.013, PII S0307904X07001643
-
B. Nagy, Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model, Appl. Math. Model, 32:1587-1598, 2008. (Pubitemid 351509463)
-
(2008)
Applied Mathematical Modelling
, vol.32
, Issue.8
, pp. 1587-1598
-
-
Nagy, B.1
-
10
-
-
52049084831
-
SEIR epidemiological model with varying infectivity and infinite delay
-
G. Rost and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5: 389-402, 2008.
-
(2008)
Math. Biosci. Eng.
, vol.5
, pp. 389-402
-
-
Rost, G.1
Wu, J.2
-
11
-
-
0032599417
-
Constructing global bifurcation diagrams by the parametric representation method
-
P. L. Simon, H. Farkas, M. Wittmann, Constructing global bifurcation diagrams by the parametric representation method, J. Comput. Appl Math., 108:157-176, 1999.
-
(1999)
J. Comput. Appl Math.
, vol.108
, pp. 157-176
-
-
Simon, P.L.1
Farkas, H.2
Wittmann, M.3
-
12
-
-
77952888377
-
Global analysis of an SEIR model with varying population size and vaccination
-
C. Sun and Y.-H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Appl. Math. Model, 34:2685-2697, 2010.
-
(2010)
Appl. Math. Model
, vol.34
, pp. 2685-2697
-
-
Sun, C.1
Hsieh, Y.-H.2
-
13
-
-
79952042045
-
-
AMS, Providence
-
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics vol. 118, AMS, Providence, 2010.
-
(2010)
Dynamical Systems and Population Persistence, Graduate Studies in Mathematics
, vol.118
-
-
Smith, H.L.1
Thieme, H.R.2
-
14
-
-
0005560997
-
Stability criteria and the real roots of a transcendental equation
-
E. M. Wright, Stability criteria and the real roots of a transcendental equation, J. Soc. Indust. Appl. Math., 9:136-148, 1961.
-
(1961)
J. Soc. Indust. Appl. Math.
, vol.9
, pp. 136-148
-
-
Wright, E.M.1
-
15
-
-
75549083983
-
Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness
-
P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Math. Biosci., 224:43-52, 2010.
-
(2010)
Math. Biosci.
, vol.224
, pp. 43-52
-
-
Yan, P.1
Feng, Z.2
-
16
-
-
33750137816
-
SEIR epidemic model with delay
-
DOI 10.1017/S144618110000345X
-
P. Yan and S. Liu, SEIR epidemic model with delay, ANZIAM J., 48:119-134, 2006. (Pubitemid 44593625)
-
(2006)
ANZIAM Journal
, vol.48
, Issue.1
, pp. 119-134
-
-
Yan, P.1
Liu, S.2
|