메뉴 건너뛰기




Volumn 21, Issue 1, 2012, Pages 33-48

On a seir epidemic model with delay

Author keywords

Envelope method; Equilibrium; Persistence; Seir model; Stability

Indexed keywords


EID: 84861856695     PISSN: 10562176     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (16)
  • 3
    • 0030882301 scopus 로고    scopus 로고
    • Backward bifurcation in epidemic control
    • DOI 10.1016/S0025-5564(97)00027-8, PII S0025556497000278
    • K.P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146:15-35, 1997. (Pubitemid 27452465)
    • (1997) Mathematical Biosciences , vol.146 , Issue.1 , pp. 15-35
    • Hadeler, K.P.1    Van Den, D.P.2
  • 4
    • 0000802631 scopus 로고
    • Persistence in infinite-dimensional systems
    • J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20:388-395, 1989.
    • (1989) SIAM J. Math. Anal. , vol.20 , pp. 388-395
    • Hale, J.K.1    Waltman, P.2
  • 5
    • 77954623221 scopus 로고    scopus 로고
    • Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate
    • G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, Bull. Math. Biol, 72:1192-1207, 2010.
    • (2010) Bull. Math. Biol , vol.72 , pp. 1192-1207
    • Huang, G.1    Takeuchi, Y.2    Ma, W.3    Wei, D.4
  • 6
    • 0032812296 scopus 로고    scopus 로고
    • Global dynamics of a SEIR model with varying total population size
    • DOI 10.1016/S0025-5564(99)00030-9, PII S0025556499000309
    • M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160:191-213, 1999. (Pubitemid 29398860)
    • (1999) Mathematical Biosciences , vol.160 , Issue.2 , pp. 191-213
    • Li, M.Y.1    Graef, J.R.2    Wang, L.3    Karsai, J.4
  • 7
    • 0028817626 scopus 로고
    • Global stability for the SEIR model in epidemiology
    • M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 12:155 164, 1995.
    • (1995) Math. Biosci. , vol.12 , pp. 155164
    • Li, M.Y.1    Muldowney, J.S.2
  • 8
    • 34548816975 scopus 로고    scopus 로고
    • Global stability for a class of mass action systems allowing for latency in tuberculosis
    • C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Anal. Appl, 338:518 535, 2008.
    • (2008) J. Math. Anal. Appl , vol.338 , pp. 518535
    • McCluskey, C.C.1
  • 9
    • 41949132407 scopus 로고    scopus 로고
    • Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model
    • DOI 10.1016/j.apm.2007.03.013, PII S0307904X07001643
    • B. Nagy, Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model, Appl. Math. Model, 32:1587-1598, 2008. (Pubitemid 351509463)
    • (2008) Applied Mathematical Modelling , vol.32 , Issue.8 , pp. 1587-1598
    • Nagy, B.1
  • 10
    • 52049084831 scopus 로고    scopus 로고
    • SEIR epidemiological model with varying infectivity and infinite delay
    • G. Rost and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5: 389-402, 2008.
    • (2008) Math. Biosci. Eng. , vol.5 , pp. 389-402
    • Rost, G.1    Wu, J.2
  • 11
    • 0032599417 scopus 로고    scopus 로고
    • Constructing global bifurcation diagrams by the parametric representation method
    • P. L. Simon, H. Farkas, M. Wittmann, Constructing global bifurcation diagrams by the parametric representation method, J. Comput. Appl Math., 108:157-176, 1999.
    • (1999) J. Comput. Appl Math. , vol.108 , pp. 157-176
    • Simon, P.L.1    Farkas, H.2    Wittmann, M.3
  • 12
    • 77952888377 scopus 로고    scopus 로고
    • Global analysis of an SEIR model with varying population size and vaccination
    • C. Sun and Y.-H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Appl. Math. Model, 34:2685-2697, 2010.
    • (2010) Appl. Math. Model , vol.34 , pp. 2685-2697
    • Sun, C.1    Hsieh, Y.-H.2
  • 14
    • 0005560997 scopus 로고
    • Stability criteria and the real roots of a transcendental equation
    • E. M. Wright, Stability criteria and the real roots of a transcendental equation, J. Soc. Indust. Appl. Math., 9:136-148, 1961.
    • (1961) J. Soc. Indust. Appl. Math. , vol.9 , pp. 136-148
    • Wright, E.M.1
  • 15
    • 75549083983 scopus 로고    scopus 로고
    • Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness
    • P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Math. Biosci., 224:43-52, 2010.
    • (2010) Math. Biosci. , vol.224 , pp. 43-52
    • Yan, P.1    Feng, Z.2
  • 16
    • 33750137816 scopus 로고    scopus 로고
    • SEIR epidemic model with delay
    • DOI 10.1017/S144618110000345X
    • P. Yan and S. Liu, SEIR epidemic model with delay, ANZIAM J., 48:119-134, 2006. (Pubitemid 44593625)
    • (2006) ANZIAM Journal , vol.48 , Issue.1 , pp. 119-134
    • Yan, P.1    Liu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.