메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 313-322

Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network

Author keywords

Alzheimer's disease; Integer coded genetic algorithm; Magnetic Resonance Imaging; Self adaptive Resource Allocation Network; Voxel based morphometry

Indexed keywords

ALZHEIMER'S DISEASE; BRAIN REGIONS; DATA SETS; EXTREME LEARNING MACHINE; GENERALIZATION PERFORMANCE; GRAY MATTER; MISCLASSIFICATION RATES; MR IMAGES; OPEN ACCESS; PERFORMANCE EVALUATION; REDUNDANT SAMPLES; RESOURCE ALLOCATION NETWORKS; SELF-ADAPTIVE; SEQUENTIAL LEARNING ALGORITHM; TRAINING SAMPLE; VOXEL-BASED MORPHOMETRY;

EID: 84861781339     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.02.035     Document Type: Article
Times cited : (49)

References (36)
  • 1
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner J., Friston K.J. Voxel-based morphometry-the methods. NeuroImage 2000, 11:805-821.
    • (2000) NeuroImage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 4
    • 0002883508 scopus 로고    scopus 로고
    • The amygdala and Alzheimers disease
    • Oxford University Press, Oxford, J.P. Aggleton (Ed.)
    • Chow T.W., Cummings J.L. The amygdala and Alzheimers disease. The Amygdala: a functional analysis 2000, 656-680. Oxford University Press, Oxford. J.P. Aggleton (Ed.).
    • (2000) The Amygdala: a functional analysis , pp. 656-680
    • Chow, T.W.1    Cummings, J.L.2
  • 5
    • 66249143023 scopus 로고    scopus 로고
    • Fully automatic hippocampus segmentation and classification in Alzheimers disease and mild cognitive impairment applied on data from ADNI
    • Chupin M., Gérardin E., Cuingnet R., Boutet C., Lemieux L., Lehéricy S., et al. Fully automatic hippocampus segmentation and classification in Alzheimers disease and mild cognitive impairment applied on data from ADNI. Hippocampus 2009, 19:579-587.
    • (2009) Hippocampus , vol.19 , pp. 579-587
    • Chupin, M.1    Gérardin, E.2    Cuingnet, R.3    Boutet, C.4    Lemieux, L.5    Lehéricy, S.6
  • 6
    • 39749189507 scopus 로고    scopus 로고
    • Detection of prodromal Alzheimer's disease via pattern classification of MRI
    • Davatzikos C., Fan Y., Wu X., Shen D., Resnick S.M. Detection of prodromal Alzheimer's disease via pattern classification of MRI. Neurobiology of Aging 2008, 29:514-523.
    • (2008) Neurobiology of Aging , vol.29 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.M.5
  • 7
    • 0032925257 scopus 로고    scopus 로고
    • Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease
    • Frisoni G.B., Laakso M.P., Beltramello A., Geroldi C., Bianchetti A., Soininen H., et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease. Neurology 1999, 52:91-100.
    • (1999) Neurology , vol.52 , pp. 91-100
    • Frisoni, G.B.1    Laakso, M.P.2    Beltramello, A.3    Geroldi, C.4    Bianchetti, A.5    Soininen, H.6
  • 9
    • 68749088904 scopus 로고    scopus 로고
    • On the use of morphometry based features for Alzheimer's disease detection on MRI
    • In Proceedings of the 10th international work-conference on artificial neural networks: part i: bio-inspired systems: computational and ambient intelligence
    • García-Sebastián, M., Savio, A., Graña, M., & Villanúa, J. (2009). On the use of morphometry based features for Alzheimer's disease detection on MRI. In Proceedings of the 10th international work-conference on artificial neural networks: part i: bio-inspired systems: computational and ambient intelligence(pp. 957-964).
    • (2009) , pp. 957-964
    • García-Sebastián, M.1    Savio, A.2    Graña, M.3    Villanúa, J.4
  • 11
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17:879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 13
    • 0344889207 scopus 로고    scopus 로고
    • Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment
    • Jack C.R., Petersen R.C., Xu Y.C., O'Brien P.C., Smith G.E., Ivnik R.J., et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999, 52:1397-1403.
    • (1999) Neurology , vol.52 , pp. 1397-1403
    • Jack, C.R.1    Petersen, R.C.2    Xu, Y.C.3    O'Brien, P.C.4    Smith, G.E.5    Ivnik, R.J.6
  • 14
    • 0031658438 scopus 로고    scopus 로고
    • Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and apo E4 in medial temporal lobe dementias. Oxford project to investigate memory and aging
    • Jobst K.A., Barnetson L.P., Shepstone B.J. Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and apo E4 in medial temporal lobe dementias. Oxford project to investigate memory and aging. International Psychogeriatrics 1998, 10:271-302.
    • (1998) International Psychogeriatrics , vol.10 , pp. 271-302
    • Jobst, K.A.1    Barnetson, L.P.2    Shepstone, B.J.3
  • 18
    • 0029063133 scopus 로고
    • Computed tomography-but not magnetic resonance imaging-identified periventricular white-matter lesions predict symptomatic cerebrovascular disease in probable Alzheimer's disease
    • Lopez O.L., Becker J.T., Jungreis C.A., Rezek D., Estol C., Boller F., et al. Computed tomography-but not magnetic resonance imaging-identified periventricular white-matter lesions predict symptomatic cerebrovascular disease in probable Alzheimer's disease. Archives of Neurology 1995, 52:659-664.
    • (1995) Archives of Neurology , vol.52 , pp. 659-664
    • Lopez, O.L.1    Becker, J.T.2    Jungreis, C.A.3    Rezek, D.4    Estol, C.5    Boller, F.6
  • 19
    • 79952617583 scopus 로고    scopus 로고
    • Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease
    • López M., Ramírez J., Górriz J.M., Álvarez I., Salas-Gonzalez D., Segovia F., et al. Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease. Neurocomputing 2011, 74:1260-1271.
    • (2011) Neurocomputing , vol.74 , pp. 1260-1271
    • López, M.1    Ramírez, J.2    Górriz, J.M.3    Álvarez, I.4    Salas-Gonzalez, D.5    Segovia, F.6
  • 21
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • Marcus D.S., Wang T.H., Parker J., Csernansky J.G., Morris J.C., Buckner R.L. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience 2007, 19:1498-1507.
    • (2007) Journal of Cognitive Neuroscience , vol.19 , pp. 1498-1507
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3    Csernansky, J.G.4    Morris, J.C.5    Buckner, R.L.6
  • 23
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 1991, 3:213-225.
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 24
    • 70349095910 scopus 로고    scopus 로고
    • Early detection of the Alzheimer's disease combining feature selection and kernel machines
    • Springer, Berlin, Heidelberg, M. Köppen, N. Kasabov, G. Coghill (Eds.)
    • Ramírez J., Górriz J.M., López M., Salas-Gonzalez D., Álvarez I., Segovia F., et al. Early detection of the Alzheimer's disease combining feature selection and kernel machines. Advances in neuro-information processing 2009, vol. 5507:410-417. Springer, Berlin, Heidelberg. M. Köppen, N. Kasabov, G. Coghill (Eds.).
    • (2009) Advances in neuro-information processing , vol.5507 , pp. 410-417
    • Ramírez, J.1    Górriz, J.M.2    López, M.3    Salas-Gonzalez, D.4    Álvarez, I.5    Segovia, F.6
  • 26
    • 84856317703 scopus 로고    scopus 로고
    • Meta-cognitive neural network for classification problems in a sequential learning framework
    • Sateesh Babu G., Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing 2012, 81:86-96.
    • (2012) Neurocomputing , vol.81 , pp. 86-96
    • Sateesh Babu, G.1    Suresh, S.2
  • 28
    • 84861771363 scopus 로고    scopus 로고
    • SPM8. Wellcome trust center for neuroimaging, Institute of neurology, UCL, London, UK.
    • SPM8 (2011). Wellcome trust center for neuroimaging, Institute of neurology, UCL, London, UK. http://www.fil.ion.ucl.ac.uk/spm/.
    • (2011)
  • 30
    • 78649975292 scopus 로고    scopus 로고
    • A sequential learning algorithm for self-adaptive resource allocation network classifier
    • Suresh S., Dong K., Kim H.J. A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing 2010, 73:3012-3019.
    • (2010) Neurocomputing , vol.73 , pp. 3012-3019
    • Suresh, S.1    Dong, K.2    Kim, H.J.3
  • 31
    • 77957870624 scopus 로고    scopus 로고
    • Performance enhancement of extreme learning machine for multi-category sparse data classification problems
    • Suresh S., Saraswathi S., Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Engineering Application of Artificial Intelligence 2010, 23:1149-1157.
    • (2010) Engineering Application of Artificial Intelligence , vol.23 , pp. 1149-1157
    • Suresh, S.1    Saraswathi, S.2    Sundararajan, N.3
  • 32
    • 41749093196 scopus 로고    scopus 로고
    • Risk sensitive hinge loss functions for sparse multi-category classification problems
    • Suresh S., Sundararajan N., Saratchandran P. Risk sensitive hinge loss functions for sparse multi-category classification problems. Information Sciences 2008, 178:2621-2638.
    • (2008) Information Sciences , vol.178 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 33
    • 40649123279 scopus 로고    scopus 로고
    • A sequential multi-category classifier using radial basis function networks
    • Suresh S., Sundararajan N., Saratchandran P. A sequential multi-category classifier using radial basis function networks. Neurocomputing 2008, 71:1345-1358.
    • (2008) Neurocomputing , vol.71 , pp. 1345-1358
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 36
    • 0031568361 scopus 로고    scopus 로고
    • A sequental learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., Saratchandran P. A sequental learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation 1997, 9:461-478.
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.