-
1
-
-
0001882616
-
Fast algorithms for mining association rules
-
Jorge B, Bocca MJ, Carlo Z, eds. Santiago, Chile: Morgan Kaufmann
-
Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Jorge B, Bocca MJ, Carlo Z, eds. Proceedings of the 20th International Conference on Very Large Databases VLDB '94. Santiago, Chile: Morgan Kaufmann; 1994, 487-499.
-
(1994)
Proceedings of the 20th International Conference on Very Large Databases VLDB '94
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
0035051307
-
Finding interesting associations without support pruning
-
Cohen E, Datar M, Fujiwara S, Gionis A, Indyk P, Motwani R, Ullman JD, Yang C. Finding interesting associations without support pruning. Knowledge and Data Engineering. 2001, 13:64-78.
-
(2001)
Knowledge and Data Engineering.
, vol.13
, pp. 64-78
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, P.5
Motwani, R.6
Ullman, J.D.7
Yang, C.8
-
5
-
-
0033400675
-
Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
-
Blackard JA, Dean DJ. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electron Agric 1999, 24:131-151.
-
(1999)
Comput Electron Agric
, vol.24
, pp. 131-151
-
-
Blackard, J.A.1
Dean, D.J.2
-
6
-
-
0002877253
-
Discovery, analysis, and presentation of strong rules
-
Piatetsky-Shapiro G, Frawley J, eds. Menlo Park, CA: AAAI/MIT Press
-
Piatetsky-ShapiroG.Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro G, Frawley J, eds. Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT Press; 1991, 229-248.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
-
7
-
-
0030380606
-
What makes patterns interesting in knowledge discovery systems
-
Silberschatz A, Tuzhilin A. What makes patterns interesting in knowledge discovery systems. IEEE Trans Knowledge Data Eng 1996, 8:970-974.
-
(1996)
IEEE Trans Knowledge Data Eng
, vol.8
, pp. 970-974
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
9
-
-
0033207925
-
On rule interestingness measures
-
Freitas AA. On rule interestingness measures. Knowledge-Based Syst 1999, 12:309-315.
-
(1999)
Knowledge-Based Syst
, vol.12
, pp. 309-315
-
-
Freitas, A.A.1
-
10
-
-
0003113325
-
Finding interesting rules from large sets of discovered association rules
-
Klemettinen M, Mannila H, Ronkainen P, Toivonen H, Verkamo A. Finding interesting rules from large sets of discovered association rules. Proceedings of the Third International Conference on Information and Knowledge Management 1999: 401-407.
-
(1999)
Proceedings of the Third International Conference on Information and Knowledge Management
, pp. 401-407
-
-
Klemettinen, M.1
Mannila, H.2
Ronkainen, P.3
Toivonen, H.4
Verkamo, A.5
-
11
-
-
0034262326
-
Analyzing the subjective interestingness of association rules
-
Liu B, Hsu W, Chen S, Ma Y. Analyzing the subjective interestingness of association rules. IEEE Intell Syst 2000, 15:47-55.
-
(2000)
IEEE Intell Syst
, vol.15
, pp. 47-55
-
-
Liu, B.1
Hsu, W.2
Chen, S.3
Ma, Y.4
-
16
-
-
79951750140
-
Efficient discovery of the top-k optimal dependency rules with the Fisher's exact test of significance
-
Webb GI, Liu B, Zhang C, Gunopulos D, Wu X, eds. Sydney, Australia
-
Hämäläinen W., Efficient discovery of the top-k optimal dependency rules with the Fisher's exact test of significance. In: Webb GI, Liu B, Zhang C, Gunopulos D, Wu X, eds. Proceedings of the Tenth IEEE International Conference on Data Mining. Sydney, Australia; 2010, 196-205.
-
(2010)
Proceedings of the Tenth IEEE International Conference on Data Mining
, pp. 196-205
-
-
Hämäläinen, W.1
-
17
-
-
77956212881
-
Re-examination of interestingness measures in pattern mining: a unified framework
-
Wu T, Chen Y, Han J. Re-examination of interestingness measures in pattern mining: a unified framework. Data Mining Knowledge Discov 2010, 21:371-397.
-
(2010)
Data Mining Knowledge Discov
, vol.21
, pp. 371-397
-
-
Wu, T.1
Chen, Y.2
Han, J.3
-
18
-
-
84867817851
-
Mining minimal non-redundant association rules using frequent closed itemsets
-
Berlin: Springer-Verlag
-
Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal L. Mining minimal non-redundant association rules using frequent closed itemsets. First International Conference on Computational Logic - CL 2000. Berlin: Springer-Verlag; 2000, 972-986.
-
(2000)
First International Conference on Computational Logic-CL 2000
, pp. 972-986
-
-
Bastide, Y.1
Pasquier, N.2
Taouil, R.3
Stumme, G.4
Lakhal, L.5
-
19
-
-
4444337294
-
Mining non-redundant association rules
-
Zaki MJ. Mining non-redundant association rules. Data Mining Knowledge Discov 2004, 9:223-248.
-
(2004)
Data Mining Knowledge Discov
, vol.9
, pp. 223-248
-
-
Zaki, M.J.1
-
20
-
-
33749562096
-
Discovering significant rules
-
The Association for Computing Machinery
-
Webb GI. Discovering significant rules. In: Ungar L, Craven M, Gunopulos D, Eliassi-Rad T, eds. Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD-2006. The Association for Computing Machinery; 2006, 434-443.
-
(2006)
Ungar L, Craven M, Gunopulos D, Eliassi-Rad T, eds. Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD-2006
, pp. 434-443
-
-
Webb, G.I.1
-
21
-
-
34249653461
-
Discovering significant patterns
-
Webb GI. Discovering significant patterns. Machine Learn 2007, 68:1-33.
-
(2007)
Machine Learn
, vol.68
, pp. 1-33
-
-
Webb, G.I.1
-
22
-
-
0000835392
-
OPUS: an efficient admissible algorithm for unordered search
-
Webb GI. OPUS: an efficient admissible algorithm for unordered search. J Artif Intell Res 1995, 3:431-465.
-
(1995)
J Artif Intell Res
, vol.3
, pp. 431-465
-
-
Webb, G.I.1
-
25
-
-
78149328321
-
Mining top-k frequent closed patterns without minimum support
-
Han J, Wang J, Lu Y, Tzvetkov P. Mining top-k frequent closed patterns without minimum support. Int Conf Data Mining 2002, 211-218.
-
(2002)
Int Conf Data Mining
, pp. 211-218
-
-
Han, J.1
Wang, J.2
Lu, Y.3
Tzvetkov, P.4
-
30
-
-
77958033888
-
Mining top-k frequent itemsets through progressive sampling
-
Pietracaprina A, Riondato M, Upfal E, Vandin F. Mining top-k frequent itemsets through progressive sampling. Data Mining Knowledge Discov 2010, 21:310-326.
-
(2010)
Data Mining Knowledge Discov
, vol.21
, pp. 310-326
-
-
Pietracaprina, A.1
Riondato, M.2
Upfal, E.3
Vandin, F.4
-
31
-
-
43049129165
-
Layered critical values: a powerful directadjustment approach to discovering significant patterns
-
Webb GI. Layered critical values: a powerful directadjustment approach to discovering significant patterns. Machine Learn 2008, 71:307-323.
-
(2008)
Machine Learn
, vol.71
, pp. 307-323
-
-
Webb, G.I.1
-
32
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
-
(1979)
Scand J Stat
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
34
-
-
37049039428
-
Assessing data mining results via swap randomization
-
Gionis A, Mannila H, Mielikinen T, Tsaparas P. Assessing data mining results via swap randomization. ACM Trans Knowledge Discov Data (TKDD) 2007, 1:11-32.
-
(2007)
ACM Trans Knowledge Discov Data (TKDD)
, vol.1
, pp. 11-32
-
-
Gionis, A.1
Mannila, H.2
Mielikinen, T.3
Tsaparas, P.4
-
39
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
Jerusalem, Israel
-
Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules. Proceedings of the Seventh International Conference onDatabase Theory (ICDT'99). Jerusalem, Israel; 1999, 398-416.
-
(1999)
Proceedings of the Seventh International Conference onDatabase Theory (ICDT'99)
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
42
-
-
0001371923
-
Fast discovery of association rules
-
Menlo Park, CA: AAAI Press
-
Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI. Fast discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, eds. Advances in KnowledgeDiscovery and Data Mining. Menlo Park, CA: AAAI Press; 1996, 307-328.
-
(1996)
Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, eds. Advances in KnowledgeDiscovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
45
-
-
77955631169
-
Self-sufficient itemsets: an approach to screening potentially interesting associations between items
-
Webb GI. Self-sufficient itemsets: an approach to screening potentially interesting associations between items. Trans Knowledge Discov Data. 2010, 3: 1-3.
-
(2010)
Trans Knowledge Discov Data.
, vol.3
, pp. 1-3
-
-
Webb, G.I.1
-
46
-
-
54049104046
-
Maximum entropy based significance of itemsets
-
Tatti N. Maximum entropy based significance of itemsets. Knowledge Inform Syst 2008, 17:57-77.
-
(2008)
Knowledge Inform Syst
, vol.17
, pp. 57-77
-
-
Tatti, N.1
-
47
-
-
77958060227
-
Using background knowledge to rank itemsets
-
Tatti N, Mampaey M. Using background knowledge to rank itemsets. Data Mining Knowledge Discov 2010, 21:293-309.
-
(2010)
Data Mining Knowledge Discov
, vol.21
, pp. 293-309
-
-
Tatti, N.1
Mampaey, M.2
-
49
-
-
0034228041
-
Rock: a robust clustering algorithm for categorical attributes
-
Guha S, Rastogi R, Shim K. Rock: a robust clustering algorithm for categorical attributes. Inform Syst 2000, 25:345-366.
-
(2000)
Inform Syst
, vol.25
, pp. 345-366
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
|