메뉴 건너뛰기




Volumn 1, Issue 3, 2011, Pages 183-192

Filtered-top-k association discovery

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATION DISCOVERIES;

EID: 84861738894     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.28     Document Type: Article
Times cited : (44)

References (50)
  • 5
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard JA, Dean DJ. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electron Agric 1999, 24:131-151.
    • (1999) Comput Electron Agric , vol.24 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 6
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • Piatetsky-Shapiro G, Frawley J, eds. Menlo Park, CA: AAAI/MIT Press
    • Piatetsky-ShapiroG.Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro G, Frawley J, eds. Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT Press; 1991, 229-248.
    • (1991) Knowledge Discovery in Databases , pp. 229-248
    • Piatetsky-Shapiro, G.1
  • 7
    • 0030380606 scopus 로고    scopus 로고
    • What makes patterns interesting in knowledge discovery systems
    • Silberschatz A, Tuzhilin A. What makes patterns interesting in knowledge discovery systems. IEEE Trans Knowledge Data Eng 1996, 8:970-974.
    • (1996) IEEE Trans Knowledge Data Eng , vol.8 , pp. 970-974
    • Silberschatz, A.1    Tuzhilin, A.2
  • 9
    • 0033207925 scopus 로고    scopus 로고
    • On rule interestingness measures
    • Freitas AA. On rule interestingness measures. Knowledge-Based Syst 1999, 12:309-315.
    • (1999) Knowledge-Based Syst , vol.12 , pp. 309-315
    • Freitas, A.A.1
  • 11
    • 0034262326 scopus 로고    scopus 로고
    • Analyzing the subjective interestingness of association rules
    • Liu B, Hsu W, Chen S, Ma Y. Analyzing the subjective interestingness of association rules. IEEE Intell Syst 2000, 15:47-55.
    • (2000) IEEE Intell Syst , vol.15 , pp. 47-55
    • Liu, B.1    Hsu, W.2    Chen, S.3    Ma, Y.4
  • 15
    • 57849137311 scopus 로고    scopus 로고
    • Scalable pattern mining with Bayesian networks as background knowledge
    • Jaroszewicz S, Scheffer T, Simovici D. Scalable pattern mining with Bayesian networks as background knowledge. Data Mining Knowledge Discov 2009, 18:56-100.
    • (2009) Data Mining Knowledge Discov , vol.18 , pp. 56-100
    • Jaroszewicz, S.1    Scheffer, T.2    Simovici, D.3
  • 16
    • 79951750140 scopus 로고    scopus 로고
    • Efficient discovery of the top-k optimal dependency rules with the Fisher's exact test of significance
    • Webb GI, Liu B, Zhang C, Gunopulos D, Wu X, eds. Sydney, Australia
    • Hämäläinen W., Efficient discovery of the top-k optimal dependency rules with the Fisher's exact test of significance. In: Webb GI, Liu B, Zhang C, Gunopulos D, Wu X, eds. Proceedings of the Tenth IEEE International Conference on Data Mining. Sydney, Australia; 2010, 196-205.
    • (2010) Proceedings of the Tenth IEEE International Conference on Data Mining , pp. 196-205
    • Hämäläinen, W.1
  • 17
    • 77956212881 scopus 로고    scopus 로고
    • Re-examination of interestingness measures in pattern mining: a unified framework
    • Wu T, Chen Y, Han J. Re-examination of interestingness measures in pattern mining: a unified framework. Data Mining Knowledge Discov 2010, 21:371-397.
    • (2010) Data Mining Knowledge Discov , vol.21 , pp. 371-397
    • Wu, T.1    Chen, Y.2    Han, J.3
  • 19
    • 4444337294 scopus 로고    scopus 로고
    • Mining non-redundant association rules
    • Zaki MJ. Mining non-redundant association rules. Data Mining Knowledge Discov 2004, 9:223-248.
    • (2004) Data Mining Knowledge Discov , vol.9 , pp. 223-248
    • Zaki, M.J.1
  • 21
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • Webb GI. Discovering significant patterns. Machine Learn 2007, 68:1-33.
    • (2007) Machine Learn , vol.68 , pp. 1-33
    • Webb, G.I.1
  • 22
    • 0000835392 scopus 로고
    • OPUS: an efficient admissible algorithm for unordered search
    • Webb GI. OPUS: an efficient admissible algorithm for unordered search. J Artif Intell Res 1995, 3:431-465.
    • (1995) J Artif Intell Res , vol.3 , pp. 431-465
    • Webb, G.I.1
  • 25
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • Han J, Wang J, Lu Y, Tzvetkov P. Mining top-k frequent closed patterns without minimum support. Int Conf Data Mining 2002, 211-218.
    • (2002) Int Conf Data Mining , pp. 211-218
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 28
    • 19944376126 scopus 로고    scopus 로고
    • TFP: an efficient algorithm for mining top-k frequent closed itemsets
    • Wang J, Han J, Lu Y, Tzvetkov P. TFP: an efficient algorithm for mining top-k frequent closed itemsets. IEEE Trans Knowledge Data Eng 2005, 652-664.
    • (2005) IEEE Trans Knowledge Data Eng , pp. 652-664
    • Wang, J.1    Han, J.2    Lu, Y.3    Tzvetkov, P.4
  • 31
    • 43049129165 scopus 로고    scopus 로고
    • Layered critical values: a powerful directadjustment approach to discovering significant patterns
    • Webb GI. Layered critical values: a powerful directadjustment approach to discovering significant patterns. Machine Learn 2008, 71:307-323.
    • (2008) Machine Learn , vol.71 , pp. 307-323
    • Webb, G.I.1
  • 32
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
    • (1979) Scand J Stat , vol.6 , pp. 65-70
    • Holm, S.1
  • 45
    • 77955631169 scopus 로고    scopus 로고
    • Self-sufficient itemsets: an approach to screening potentially interesting associations between items
    • Webb GI. Self-sufficient itemsets: an approach to screening potentially interesting associations between items. Trans Knowledge Discov Data. 2010, 3: 1-3.
    • (2010) Trans Knowledge Discov Data. , vol.3 , pp. 1-3
    • Webb, G.I.1
  • 46
    • 54049104046 scopus 로고    scopus 로고
    • Maximum entropy based significance of itemsets
    • Tatti N. Maximum entropy based significance of itemsets. Knowledge Inform Syst 2008, 17:57-77.
    • (2008) Knowledge Inform Syst , vol.17 , pp. 57-77
    • Tatti, N.1
  • 47
    • 77958060227 scopus 로고    scopus 로고
    • Using background knowledge to rank itemsets
    • Tatti N, Mampaey M. Using background knowledge to rank itemsets. Data Mining Knowledge Discov 2010, 21:293-309.
    • (2010) Data Mining Knowledge Discov , vol.21 , pp. 293-309
    • Tatti, N.1    Mampaey, M.2
  • 49
    • 0034228041 scopus 로고    scopus 로고
    • Rock: a robust clustering algorithm for categorical attributes
    • Guha S, Rastogi R, Shim K. Rock: a robust clustering algorithm for categorical attributes. Inform Syst 2000, 25:345-366.
    • (2000) Inform Syst , vol.25 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.