-
2
-
-
43849110437
-
-
S.-M. Yang, S.-H. Kim, J.-M. Lima, and G.-R. Yi, J. Mater. Chem. 18, 2177 (2008).
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 2177
-
-
Yang, S.-M.1
Kim, S.-H.2
Lima, J.-M.3
Yi, G.-R.4
-
4
-
-
77952332201
-
-
M. Marechal, R. J. Kortschot, A. F. Demirörs, A. Imhof, and M. Dijkstra, Nano Lett. 10, 1907 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 1907
-
-
Marechal, M.1
Kortschot, R.J.2
Demirörs, A.F.3
Imhof, A.4
Dijkstra, M.5
-
6
-
-
9644273845
-
-
X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
-
(2004)
Nano Lett.
, vol.4
, pp. 2223
-
-
Wang, X.D.1
Graugnard, E.2
King, J.S.3
Wang, Z.L.4
Summers, C.J.5
-
8
-
-
77950557364
-
-
D. Nagao, C. M. van Kats, K. Hayasaka, M. Sugimoto, M. Konno, A. Imhof, and A. van Blaaderen, Langmuir 26, 5208 (2010).
-
(2010)
Langmuir
, vol.26
, pp. 5208
-
-
Nagao, D.1
Van Kats, C.M.2
Hayasaka, K.3
Sugimoto, M.4
Konno, M.5
Imhof, A.6
Van Blaaderen, A.7
-
9
-
-
77955524173
-
-
M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4, 3591 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 3591
-
-
Grzelczak, M.1
Vermant, J.2
Furst, E.M.3
Liz-Marzán, L.M.4
-
11
-
-
27944475500
-
-
S. C. Glotzer, M. A. Horsch, C. R. Iacovella, Z. Zhang, E. R. Chan, and X. Zhang, Curr. Opin. Colloid Interface & Sci. 10, 287 (2005).
-
(2005)
Curr. Opin. Colloid Interface & Sci.
, vol.10
, pp. 287
-
-
Glotzer, S.C.1
Horsch, M.A.2
Iacovella, C.R.3
Zhang, Z.4
Chan, E.R.5
Zhang, X.6
-
13
-
-
56349096293
-
-
D. Fava, Z. Nie, M. A. Winnik, and E. Kumacheva, Adv. Mater. 20, 4318 (2008).
-
(2008)
Adv. Mater.
, vol.20
, pp. 4318
-
-
Fava, D.1
Nie, Z.2
Winnik, M.A.3
Kumacheva, E.4
-
14
-
-
0344182427
-
-
E. L. Thomas, Science 286, 1307 (1999).
-
(1999)
Science
, vol.286
, pp. 1307
-
-
Thomas, E.L.1
-
15
-
-
67749116254
-
-
D. J. Kraft, W. S. Vlug, C. M. van Kats, A. van Blaaderen, A. Imhof, and W. K. Kegel, J. Am. Chem. Soc. 131, 1182 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.131
, pp. 1182
-
-
Kraft, D.J.1
Vlug, W.S.2
Van Kats, C.M.3
Van Blaaderen, A.4
Imhof, A.5
Kegel, W.K.6
-
17
-
-
5644287370
-
-
D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. Kornowski, S. Förster, and H. Weller, J. Am. Chem. Soc. 126, 12984 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 12984
-
-
Talapin, D.V.1
Shevchenko, E.V.2
Murray, C.B.3
Kornowski, A.4
Förster, S.5
Weller, H.6
-
20
-
-
33645701378
-
-
D. van der Beek, A. V. Petukhov, P. Davidson, J. Ferré, J. P. Jamet, H. H. Wensink, G. J. Vroege, W. Bras, and H. N. Lekkerkerker, Phys. Rev. E 73, 041402 (2006).
-
(2006)
Phys. Rev. e
, vol.73
, pp. 041402
-
-
Beek Der D.Van1
Petukhov, A.V.2
Davidson, P.3
Ferré, J.4
Jamet, J.P.5
Wensink, H.H.6
Vroege, G.J.7
Bras, W.8
Lekkerkerker, H.N.9
-
21
-
-
0031556446
-
-
K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, and M. L. H. Green, Appl. Phys. Lett. 71, 1906 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 1906
-
-
Bubke, K.1
Gnewuch, H.2
Hempstead, M.3
Hammer, J.4
Green, M.L.H.5
-
22
-
-
77956578779
-
-
A. F. Demirörs, P. M. Johnson, C. M. van Kats, A. van Blaaderen, and A. Imhof, Langmuir 26, 14466 (2010).
-
(2010)
Langmuir
, vol.26
, pp. 14466
-
-
Demirörs, A.F.1
Johnson, P.M.2
Van Kats, C.M.3
Van Blaaderen, A.4
Imhof, A.5
-
23
-
-
0000064757
-
-
P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 1399
-
-
Smith, P.A.1
Nordquist, C.D.2
Jackson, T.N.3
Mayer, T.S.4
Martin, B.R.5
Mbindyo, J.6
Mallouk, T.E.7
-
24
-
-
33746878236
-
-
K. M. Ryan, A. Mastroianni, K. A. Stancil, H. Liu, and A. P. Alivisatos, Nano Lett. 6, 1479 (2006).
-
(2006)
Nano Lett.
, vol.6
, pp. 1479
-
-
Ryan, K.M.1
Mastroianni, A.2
Stancil, K.A.3
Liu, H.4
Alivisatos, A.P.5
-
27
-
-
28844480136
-
-
H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and G. Mukhopadhyay, Phys. Rev. A 72, 053201 (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 053201
-
-
Kim, H.-Y.1
Sofo, J.O.2
Velegol, D.3
Cole, M.W.4
Mukhopadhyay, G.5
-
29
-
-
33244483850
-
-
H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and A. A. Lucas, J. Chem. Phys. 124, 074504 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 074504
-
-
Kim, H.-Y.1
Sofo, J.O.2
Velegol, D.3
Cole, M.W.4
Lucas, A.A.5
-
30
-
-
33947187371
-
-
H.-Y. Kim, J. O. Sofo, D. Velegol, M.W. Cole, and A. A. Lucas, Langmuir 23, 1735 (2007).
-
(2007)
Langmuir
, vol.23
, pp. 1735
-
-
Kim, H.-Y.1
Sofo, J.O.2
Velegol, D.3
Cole, M.W.4
Lucas, A.A.5
-
32
-
-
80054703634
-
-
B.W. Kwaadgras, M. Verdult, M. Dijkstra, and R. van Roij, J. Chem. Phys. 135, 134105 (2011).
-
(2011)
J. Chem. Phys.
, vol.135
, pp. 134105
-
-
Kwaadgras, B.W.1
Verdult, M.2
Dijkstra, M.3
Van Roij, R.4
-
36
-
-
1942422783
-
-
A. Sihvola, P. Yla-Oijala, S. Jarvenpaa, and J. Avelin, IEEE Trans. Antennas. Propag. 52, 2226 (2004).
-
(2004)
IEEE Trans. Antennas. Propag.
, vol.52
, pp. 2226
-
-
Sihvola, A.1
Yla-Oijala, P.2
Jarvenpaa, S.3
Avelin, J.4
-
40
-
-
84861705527
-
-
Other choices for the definition of size parameter are possible, with the condition that it, together with the shape parameter, fixes the dimensions of the particle. For example, a possibility would be to define the size parameter as the diameter of the particle's circumscribed sphere. Qualitatively, this new definition does not cause any change to our results; quantitatively, we observe that the minima for rods shift to l/L ∼ 0.47 and those for platelets to L/l ∼ 0.32, while there is no change for bowls and dumbbells (since the size parameter remains s and s + L, respectively).
-
Other choices for the definition of size parameter are possible, with the condition that it, together with the shape parameter, fixes the dimensions of the particle. For example, a possibility would be to define the size parameter as the diameter of the particle's circumscribed sphere. Qualitatively, this new definition does not cause any change to our results; quantitatively, we observe that the minima for rods shift to l/L ∼ 0.47 and those for platelets to L/l ∼ 0.32, while there is no change for bowls and dumbbells (since the size parameter remains s and s + L, respectively).
-
-
-
-
41
-
-
84861712191
-
-
The reason why a lower lattice constant lowers L or lis two-fold: a lower lattice constant means that atoms interact more and hence will have a higher of; at the same time it also means that the atom density is higher and thus smaller dimensions are needed to achieve a certain number of atoms
-
The reason why a lower lattice constant lowers L or lis two-fold: a lower lattice constant means that atoms interact more and hence will have a higher of; at the same time it also means that the atom density is higher and thus smaller dimensions are needed to achieve a certain number of atoms.
-
-
-
|