|
Volumn , Issue , 2011, Pages 7945-7948
|
Predicting human subcutaneous glucose concentration in real time: A universal data-driven approach
d
TATRC
(United States)
|
Author keywords
[No Author keywords available]
|
Indexed keywords
AUTO REGRESSIVE MODELS;
CONTINUOUS GLUCOSE MONITORING;
DATA-DRIVEN;
DATA-DRIVEN ALGORITHM;
DATA-DRIVEN APPROACH;
DIABETIC PATIENT;
GLUCOSE CONCENTRATION;
GLUCOSE LEVEL;
MODEL-BASED OPC;
OFFLINE;
PREDICTION MODEL;
REAL TIME;
REAL TIME FILTERING;
REAL-TIME IMPLEMENTATIONS;
SHORT TERM PREDICTION;
FORECASTING;
MATHEMATICAL MODELS;
REAL TIME CONTROL;
GLUCOSE;
GLUCOSE;
ADOLESCENT;
ADULT;
AGED;
ALGORITHM;
ARTICLE;
BIOLOGICAL MODEL;
BLOOD GLUCOSE MONITORING;
COMPUTER SIMULATION;
HUMAN;
METABOLISM;
METHODOLOGY;
MIDDLE AGED;
REGRESSION ANALYSIS;
SUBCUTANEOUS TISSUE;
TIME;
YOUNG ADULT;
ADOLESCENT;
ADULT;
AGED;
ALGORITHMS;
BLOOD GLUCOSE SELF-MONITORING;
COMPUTER SIMULATION;
GLUCOSE;
HUMANS;
MIDDLE AGED;
MODELS, BIOLOGICAL;
REGRESSION ANALYSIS;
SUBCUTANEOUS TISSUE;
TIME FACTORS;
YOUNG ADULT;
|
EID: 84861658913
PISSN: 1557170X
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/IEMBS.2011.6091959 Document Type: Conference Paper |
Times cited : (11)
|
References (8)
|