메뉴 건너뛰기




Volumn 99, Issue 2, 2012, Pages 299-313

Componentwise classification and clustering of functional data

Author keywords

Bandwidth; Classification error rate; Kernel method; Statistical smoothing; Tightness of clusters

Indexed keywords


EID: 84861623629     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/ass003     Document Type: Article
Times cited : (67)

References (33)
  • 1
    • 70249146183 scopus 로고    scopus 로고
    • Functional logistic discrimination via regularized basis expansions
    • ARAKI, Y., KONISHI, S., KAWANO, S. & MATSUI, H. (2009). Functional logistic discrimination via regularized basis expansions. Commun. Statist. A 38, 2944-57.
    • (2009) Commun. Statist. A , vol.38 , pp. 2944-2957
    • Araki, Y.1    Konishi, S.2    Kawano, S.3    Matsui, H.4
  • 3
  • 4
    • 77649231983 scopus 로고    scopus 로고
    • A hidden process regression model for functional data description. Application to curve discrimination
    • CHAMROUKHI, F., SAME, A.,GOVAERT, G. & AKNIN, P. (2010). A hidden process regression model for functional data description. Application to curve discrimination. Neurocomputing 73, 1210-21.
    • (2010) Neurocomputing , vol.73 , pp. 1210-1221
    • Chamroukhi, F.1    Same, A.2    Govaert, G.3    Aknin, P.4
  • 5
    • 34547837451 scopus 로고    scopus 로고
    • Functional clustering and identifying substructures of longitudinal data
    • CHIOU, J.-M. & LI, P.-L. (2007). Functional clustering and identifying substructures of longitudinal data. J. R. Statist. Soc. B 69, 679-99.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 679-699
    • Chiou, J.-M.1    Li, P.-L.2
  • 6
    • 36049026510 scopus 로고    scopus 로고
    • Robust estimation and classification for functional data via projection-based depth notions
    • CUEVAS, A., FEBRERO, M. & FRAIMAN, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Comp. Statist. 22, 481-96.
    • (2007) Comp. Statist. , vol.22 , pp. 481-496
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 7
    • 77649330804 scopus 로고    scopus 로고
    • Defining probability density for a distribution of random functions
    • DELAIGLE, A. & HALL, P. (2010). Defining probability density for a distribution of random functions. Ann. Statist. 38, 1171-93.
    • (2010) Ann. Statist. , vol.38 , pp. 1171-1193
    • Delaigle, A.1    Hall, P.2
  • 8
    • 84858298016 scopus 로고    scopus 로고
    • Achieving near-perfect classification for functional data
    • DELAIGLE, A. & HALL, P. (2012). Achieving near-perfect classification for functional data. J. R. Statist. Soc. B 74, 267-86.
    • (2012) J. R. Statist. Soc. B , vol.74 , pp. 267-286
    • Delaigle, A.1    Hall, P.2
  • 9
    • 55149115372 scopus 로고    scopus 로고
    • Shape descriptors for classification of functional data
    • EPIFANIO, I. (2008). Shape descriptors for classification of functional data. Technometrics 50, 284-94.
    • (2008) Technometrics , vol.50 , pp. 284-294
    • Epifanio, I.1
  • 11
    • 0141989607 scopus 로고    scopus 로고
    • Curves discrimination: A nonparametric functional approach
    • FERRATY, F. & VIEU, P. (2003). Curves discrimination: a nonparametric functional approach. Comp. Statist. Data Anal. 4, 161-73.
    • (2003) Comp. Statist. Data Anal. , vol.4 , pp. 161-173
    • Ferraty, F.1    Vieu, P.2
  • 13
    • 58549087708 scopus 로고    scopus 로고
    • Additive prediction and boosting for functional data
    • FERRATY, F. & VIEU, P. (2009). Additive prediction and boosting for functional data. Comp. Statist. Data Anal. 53, 1400-13.
    • (2009) Comp. Statist. Data Anal. , vol.53 , pp. 1400-1413
    • Ferraty, F.1    Vieu, P.2
  • 14
    • 78651323070 scopus 로고    scopus 로고
    • Most-predictive design points for functional data predictors
    • FERRATY, F.,HALL, P. & VIEU, P. (2010). Most-predictive design points for functional data predictors. Biometrika 97, 807-24.
    • (2010) Biometrika , vol.97 , pp. 807-824
    • Ferraty F.Hall, P.1    Vieu, P.2
  • 15
    • 84861589186 scopus 로고    scopus 로고
    • Functional classification with margin conditions
    • Pittsburgh, PA, USA, June 22-25, 2006, Ed. J. G. Carbonell and J. Siekmann. New York: Springer
    • FROMONT, M. & TULEAU, C. (2006). Functional classification with margin conditions. In Proc. 19th Annual Conf. Learn. Theory, Pittsburgh, PA, USA, June 22-25, 2006, Ed. J. G. Carbonell and J. Siekmann. New York: Springer.
    • (2006) Proc. 19th Annual Conf. Learn. Theory
    • Fromont, M.1    Tuleau, C.2
  • 16
    • 0038329316 scopus 로고    scopus 로고
    • Shape classification using smooth principal components
    • GLENDINNING, R. H. & HERBERT, R. A. (2003). Shape classification using smooth principal components. Pat. Recog. Lett. 24, 2021-30.
    • (2003) Pat. Recog. Lett. , vol.24 , pp. 2021-2030
    • Glendinning, R.H.1    Herbert, R.A.2
  • 17
    • 33645039219 scopus 로고    scopus 로고
    • On properties of functional principal components analysis
    • HALL, P. & HOSSEINI-NASSAB, M. (2006). On properties of functional principal components analysis. J. R. Statist. Soc. B 68, 109-26.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 109-126
    • Hall, P.1    Hosseini-Nassab, M.2
  • 18
    • 0035252777 scopus 로고    scopus 로고
    • A functional data-Analytic approach to signal discrimination
    • HALL, P., POSKITT, D. & PRESNELL, B. (2001). A functional data-Analytic approach to signal discrimination. Technometrics 43, 1-9.
    • (2001) Technometrics , vol.43 , pp. 1-9
    • Hall, P.1    Poskitt, D.2    Presnell, B.3
  • 19
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • HUANG, D.-S. & ZHENG, C.-H. (2006). Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22, 1855-62.
    • (2006) Bioinformatics , vol.22 , pp. 1855-1862
    • Huang, D.-S.1    Zheng, C.-H.2
  • 20
    • 0035535702 scopus 로고    scopus 로고
    • Functional linear discriminant analysis for irregularly sampled curves
    • JAMES, G. & HASTIE, T. (2001). Functional linear discriminant analysis for irregularly sampled curves. J. R. Statist. Soc. B 63, 533-50.
    • (2001) J. R. Statist. Soc. B , vol.63 , pp. 533-550
    • James, G.1    Hastie, T.2
  • 21
    • 0043245795 scopus 로고    scopus 로고
    • Clustering for sparsely sampled functional data
    • JAMES, G. & SUGAR, C. (2003). Clustering for sparsely sampled functional data. J. Am. Statist. Assoc. 98, 397-408.
    • (2003) J. Am. Statist. Assoc. , vol.98 , pp. 397-408
    • James, G.1    Sugar, C.2
  • 22
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • LENG, X. & MÜLLER, H.-G. (2006). Classification using functional data analysis for temporal gene expression data. Bioinformatics 22, 68-76.
    • (2006) Bioinformatics , vol.22 , pp. 68-76
    • Leng, X.1    Müller, H.-G.2
  • 24
    • 77956764784 scopus 로고    scopus 로고
    • Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions
    • PENG, J. & MÜLLER, H.-G. (2008). Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions. Ann. Appl. Statist. 2, 1056-77.
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 1056-1077
    • Peng, J.1    Müller, H.-G.2
  • 25
    • 34347222890 scopus 로고    scopus 로고
    • Pls classification of functional data
    • PREDA, C., SAPORTA, G. & LEVEDER, C. (2007). PLS classification of functional data. Comp. Statist. 22, 223-35.
    • (2007) Comp. Statist. , vol.22 , pp. 223-235
    • Preda, C.1    Saporta, G.2    Leveder, C.3
  • 28
    • 32544451454 scopus 로고    scopus 로고
    • Support vector machine for functional data classification
    • ROSSI, F. & VILLA, N. (2006). Support vector machine for functional data classification. Neurocomputing 69, 730-42.
    • (2006) Neurocomputing , vol.69 , pp. 730-742
    • Rossi, F.1    Villa, N.2
  • 29
    • 43049109196 scopus 로고    scopus 로고
    • An extension of fisher's discriminant analysis for stochastic processes
    • SHIN, H. (2008). An extension of Fisher's discriminant analysis for stochastic processes. J. Mult. Anal. 99, 1191-216.
    • (2008) J. Mult. Anal. , vol.99 , pp. 1191-1216
    • Shin, H.1
  • 30
    • 54149112329 scopus 로고    scopus 로고
    • Optimal classification for time-course gene expression data using functional data analysis
    • SONG, J. J., DENG, W., LEE, H.-J. & KWON, D. (2008). Optimal classification for time-course gene expression data using functional data analysis. Comp. Biol. Chem. 32, 426-32.
    • (2008) Comp. Biol. Chem. , vol.32 , pp. 426-432
    • Song, J.J.1    Deng, W.2    Lee, H.-J.3    Kwon, D.4
  • 31
    • 2542542746 scopus 로고    scopus 로고
    • Discriminant and cluster analysis for gaussian stationary processes: Local linear fitting approach
    • VILAR, J. A. & PERTEGA, S. (2004). Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach. J. Nonparam. Statist. 16, 443-62.
    • (2004) J. Nonparam. Statist. , vol.16 , pp. 443-462
    • Vilar, J.A.1    Pertega, S.2
  • 33
    • 35348897501 scopus 로고    scopus 로고
    • Bayesian curve classification using wavelets
    • WANG, X. H., RAY, S. & MALLICK, B. K. (2007). Bayesian curve classification using wavelets. J. Am. Statist. Assoc. 102, 962-73.
    • (2007) J. Am. Statist. Assoc. , vol.102 , pp. 962-973
    • Wang, X.H.1    Ray, S.2    Mallick, B.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.