메뉴 건너뛰기




Volumn 25, Issue 3, 2012, Pages 409-422

Automatic segmentation of ground-glass opacities in lung CT images by using markov rand om field-based algorithms

Author keywords

Image segmentation; Lung diseases; Markov chains; Tomography; X ray computed

Indexed keywords

AUTOMATIC SEGMENTATIONS; AVERAGE SENSITIVITIES; COMBINATORIAL OPTIMIZATION PROBLEMS; COMPUTED TOMOGRAPHY; CT IMAGE; DIAGNOSTIC PROCEDURE; DIFFUSE LUNG DISEASE; DISEASE SEVERITY; FALSE POSITIVE; GIBBS SAMPLERS; GROUND-GLASS OPACITY; HIGH RESOLUTION CT; LOCAL DISTRIBUTIONS; LUNG CT; MAP ESTIMATOR; MARKOV RANDOM FIELDS; MAXIMUM A POSTERIORI; RECOVERY STAGES; SEGMENTATION RESULTS; SIMULATED ANNEALING ALGORITHMS; SUBJECTIVE EVALUATIONS; SUPPORT VECTOR; X-RAY COMPUTED;

EID: 84861592200     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-011-9435-5     Document Type: Article
Times cited : (38)

References (28)
  • 2
    • 0031474333 scopus 로고    scopus 로고
    • Fractal analysis for classification of ground-glass opacity on highresolution CT: An in vitro study
    • Shimizu K, Johkoh T, Ikezoe J, Ichikado K, et al: Fractal analysis for classification of ground-glass opacity on highresolution CT: an in vitro study. J Comput Assist Tomogr 21 (6):955-962, 1997
    • (1997) J Comput Assist Tomogr , vol.21 , Issue.6 , pp. 955-962
    • Shimizu, K.1    Johkoh, T.2    Ikezoe, J.3    Ichikado, K.4
  • 4
    • 0036182280 scopus 로고    scopus 로고
    • Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: Evaluation with receiver operating characteristic analysis
    • Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S, Doi K: Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Am J Roentgenol 178(3):657-663, 2002 (Pubitemid 34178147)
    • (2002) American Journal of Roentgenology , vol.178 , Issue.3 , pp. 657-663
    • Matsuki, Y.1    Nakamura, K.2    Watanabe, H.3    Aoki, T.4    Nakata, H.5    Katsuragawa, S.6    Doi, K.7
  • 5
    • 0034009298 scopus 로고    scopus 로고
    • Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks
    • Nakamura K, Yoshida H, Engelmann R, MacMahon H, et al: Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 214:823-830, 2000 (Pubitemid 30115386)
    • (2000) Radiology , vol.214 , Issue.3 , pp. 823-830
    • Nakamura, K.1    Yoshida, M.2    Engelmann, R.3    MacMahon, H.4    Katsuragawa, S.5    Ishida, T.6    Ashizawa, K.7    Doi, K.8
  • 7
    • 75849153966 scopus 로고    scopus 로고
    • Feature selection and performance evaluation of support vector machine (SVM) based classifier for differentiating benign and malignant pulmonary nodules by computed tomography
    • Zhu Y, Tan Y, Hua Y, Wang M, Zhang G, Zhang J: Feature selection and performance evaluation of support vector machine (SVM) based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imaging 23:51-65, 2010
    • (2010) J Digit Imaging , vol.23 , pp. 51-65
    • Zhu, Y.1    Tan, Y.2    Hua, Y.3    Wang, M.4    Zhang, G.5    Zhang, J.6
  • 8
    • 0031461184 scopus 로고    scopus 로고
    • Usual interstitial pneumonia: Quantitative assessment of high- resolution computed tomography findings by computer-assisted texture-based image analysis
    • DOI 10.1097/00004424-199709000-00009
    • Delorme S, Keller-Reichenbecher M, Zuna I, Schlegel W, Van Kaick G: Usual interstitial pneumonia: quantitative assessment of high-resolution computed tomography findings by computerassisted texture-based image analysis. Invest Radiol 32(9):566-574, 1997 (Pubitemid 28049503)
    • (1997) Investigative Radiology , vol.32 , Issue.9 , pp. 566-574
    • Delorme, S.1    Keller-Reichenbecher, M.-A.2    Zuna, I.3    Schlegel, W.4    Van Kaick, G.5
  • 11
    • 0033761466 scopus 로고    scopus 로고
    • Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: Comparison with a density mask
    • Kauczor HU, Heitmann K, Heussel CP, Marwede D, Uthmann T, Thelen M: Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask. Am J Roentgenol 175(5):1329-1334, 2000
    • (2000) Am J Roentgenol , vol.175 , Issue.5 , pp. 1329-1334
    • Kauczor, H.U.1    Heitmann, K.2    Heussel, C.P.3    Marwede, D.4    Uthmann, T.5    Thelen, M.6
  • 12
    • 0141743729 scopus 로고    scopus 로고
    • Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography
    • DOI 10.1118/1.1597431
    • Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F, Li Q, Zhang CT, Suzuki K, Doi K: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30(9):2440-2454, 2003 (Pubitemid 37129750)
    • (2003) Medical Physics , vol.30 , Issue.9 , pp. 2440-2454
    • Uchiyama, Y.1    Katsuragawa, S.2    Abe, H.3    Shiraishi, J.4    Li, F.5    Li, Q.6    Zhang, C.-T.7    Suzuki, K.8    Doi, K.9
  • 13
    • 23844556228 scopus 로고    scopus 로고
    • A computer-based method of segmenting ground glass nodules in pulmonary CT images: Comparison to expert radiologists' interpretations
    • DOI 10.1117/12.595872, 12, Medical Imaging 2005 - Image Processing
    • Zhang L, Zhang T, Novak CL, et al: A computer-based method of segmenting ground glass nodules in pulmonary CT images: comparison to expert radiologists' interpretations. SPIE Med Imaging 5747:113-123, 2005 (Pubitemid 41146652)
    • (2005) Progress in Biomedical Optics and Imaging - Proceedings of SPIE , vol.5747 , Issue.1 , pp. 113-123
    • Zhang, L.1    Zhang, T.2    Novak, C.L.3    Naidich, D.P.4    Moses, D.A.5
  • 14
    • 0034229994 scopus 로고    scopus 로고
    • Sonar image segmentation using an unsupervised hierarchical MRF model
    • Mignotte M, Collet C, Perez P, Bouthemy P: Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans Image Process 9(7):1216-1231, 2000
    • (2000) IEEE Trans Image Process , vol.9 , Issue.7 , pp. 1216-1231
    • Mignotte, M.1    Collet, C.2    Perez, P.3    Bouthemy, P.4
  • 15
    • 0031186538 scopus 로고    scopus 로고
    • Synthetic aperture radar image segmentation by a detail preserving markov random field approach
    • PII S0196289297044756
    • Smits PC, Dellepiane SG: Synthetic aperture radar image segmentation by a detail preserving Markov random field approach. IEEE Trans Geosci Remote Sens 35(4):844-857, 1997 (Pubitemid 127771124)
    • (1997) IEEE Transactions on Geoscience and Remote Sensing , vol.35 , Issue.4 , pp. 844-857
    • Smits, P.C.1
  • 23
    • 0031359087 scopus 로고    scopus 로고
    • Texture segmentation using multiscale Hurst features
    • Kaplan LM, Murenzi R: Texture segmentation using multiscale Hurst features. ICIP'97. 3:205, 1997
    • (1997) ICIP'97. , vol.3 , pp. 205
    • Kaplan, L.M.1    Murenzi, R.2
  • 24
    • 0029409269 scopus 로고
    • Texture classification and segmentation using wavelet frames
    • Unser M: Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549-1560, 1995
    • (1995) IEEE Trans Image Process , vol.4 , Issue.11 , pp. 1549-1560
    • Unser, M.1
  • 25
    • 0035272095 scopus 로고    scopus 로고
    • Texture segmentation using Gaussian-Markov random fields and neural oscillator networks
    • DOI 10.1109/72.914533, PII S1045922701020501
    • Cesmeli E, Wang D: Texture segmentation using Gaussian-Markov random fields and neural oscillator networks. IEEE Trans Neural Networks 12(2):394-404, 2001 (Pubitemid 32371493)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 394-404
    • Cesmeli, E.1    Wang, D.2
  • 26
    • 4944252600 scopus 로고    scopus 로고
    • Software, Accessed July 28, 2009
    • LIBSVM: a library for support vector machines, 2001. Software. Available at http://www.csie.ntu.edu.tw/?cjlin/libsvm. Accessed July 28, 2009
    • (2001) LIBSVM: A Library for Support Vector Machines
  • 27
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389-422, 2002 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.