메뉴 건너뛰기




Volumn 26, Issue 5, 2012, Pages 429-444

Leak detection in simulated water pipe networks using SVM

Author keywords

[No Author keywords available]

Indexed keywords

INVERSE PROBLEMS; LEAK DETECTION; LOCATION; NEURAL NETWORKS; PATTERN RECOGNITION; WATER PIPELINES;

EID: 84861375237     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839514.2012.670974     Document Type: Article
Times cited : (61)

References (21)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M., E. Braverman, and L. Rozonoer. 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25:821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 3
    • 68649105728 scopus 로고    scopus 로고
    • The impact of water scarcity on economic development initiatives
    • Blignaut, J., and J. van Heerden. 2009. The impact of water scarcity on economic development initiatives. Water SA 35 (4): 415-420.
    • (2009) Water SA , vol.35 , Issue.4 , pp. 415-420
    • Blignaut, J.1    Van Heerden, J.2
  • 4
    • 0037830897 scopus 로고    scopus 로고
    • Using neural networks to monitor piping systems
    • Caputo, A. C., and P. M. Pelagagge. 2003. Using neural networks to monitor piping systems. Process Safety Progress 22 (2): 119-127.
    • (2003) Process Safety Progress , vol.22 , Issue.2 , pp. 119-127
    • Caputo, A.C.1    Pelagagge, P.M.2
  • 5
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • available at
    • Chang, C.-C., and C.-J. Lin. 2001. LIBSVM: A library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2001) Software
    • Chang, C.-C.1    Lin, C.-J.2
  • 7
    • 33749572488 scopus 로고    scopus 로고
    • Algorithm of pipeline leak detection based on discrete incremental clustering method
    • LNAI 4114, ed. D.-S. Huang, K. Li, and G. W. Irwin, Berlin: Springer-Verlag
    • Feng, J., and H. Zhang. 2006. Algorithm of pipeline leak detection based on discrete incremental clustering method. In ICIC 2006, LNAI 4114, ed. D.-S. Huang, K. Li, and G. W. Irwin, 602-607. Berlin: Springer-Verlag.
    • (2006) ICIC 2006 , pp. 602-607
    • Feng, J.1    Zhang, H.2
  • 8
    • 0025742297 scopus 로고
    • Ten years of experience with leak detection by acoustic signal analysis
    • Fuchs, H. V., and R. Riehle. 1991. Ten years of experience with leak detection by acoustic signal analysis. Applied Acoustics 33 (1): 1-19.
    • (1991) Applied Acoustics , vol.33 , Issue.1 , pp. 1-19
    • Fuchs, H.V.1    Riehle, R.2
  • 9
    • 72849135004 scopus 로고    scopus 로고
    • An experimental investigation into the pressure leakage relationship of some failed water pipes
    • Halifax, Canada
    • Greyvenstein, B., and J. E. Van Zyl. 2005. An experimental investigation into the pressure leakage relationship of some failed water pipes. In Proceedings of Leakage 2005, Halifax, Canada.
    • (2005) Proceedings of Leakage , vol.2005
    • Greyvenstein, B.1    Van Zyl, J.E.2
  • 10
    • 34247877823 scopus 로고    scopus 로고
    • Fault detection in water supply systems using hybrid (theory and data-driven) modelling
    • Izquierdo, J., P. A. López, and R. P. Martínez. 2007. Fault detection in water supply systems using hybrid (theory and data-driven) modelling. Mathematical and Computer Modelling 46:341-350.
    • (2007) Mathematical and Computer Modelling , vol.46 , pp. 341-350
    • Izquierdo, J.1    López, P.A.2    Martínez, R.P.3
  • 12
    • 0028484821 scopus 로고
    • Inverse transient analysis in pipe networks
    • Liggett, J. A., and Chen, L. C. 1994. Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering 120 (8): 934-955.
    • (1994) Journal of Hydraulic Engineering , vol.120 , Issue.8 , pp. 934-955
    • Liggett, J.A.1    Chen, L.C.2
  • 14
    • 77954171515 scopus 로고    scopus 로고
    • Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows
    • Mounce, S. R., J. B. Boxall, and J. Machell. 2010. Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water Resources Planning and Management ASCE 136 (3): 309-318.
    • (2010) Journal of Water Resources Planning and Management ASCE , vol.136 , Issue.3 , pp. 309-318
    • Mounce, S.R.1    Boxall, J.B.2    Machell, J.3
  • 16
    • 0003606110 scopus 로고    scopus 로고
    • Cincinatti, Ohio, USA: U.S. Environmental Protection Agency
    • Rossman, L. A. 2000. EPANET 2 user's manual. Cincinatti, Ohio, USA: U.S. Environmental Protection Agency.
    • (2000) EPANET 2 User's Manual
    • Rossman, L.A.1
  • 17
    • 14644411797 scopus 로고    scopus 로고
    • Use of supervisory control and data acquisition for damage location of water delivery systems
    • Shinozuka, M., J. Liang, and M. Q. Feng. 2005. Use of supervisory control and data acquisition for damage location of water delivery systems. Journal of Engineering Mechanics 131 (3): 225-230.
    • (2005) Journal of Engineering Mechanics , vol.131 , Issue.3 , pp. 225-230
    • Shinozuka, M.1    Liang, J.2    Feng, M.Q.3
  • 19
    • 34250170850 scopus 로고    scopus 로고
    • The effect of pressure on leakage in water distribution systems
    • Van Zyl, J. E., and C. R. I. Clayton. 2007. The effect of pressure on leakage in water distribution systems. Water Management 160:109-114.
    • (2007) Water Management , vol.160 , pp. 109-114
    • Van Zyl, J.E.1    Clayton, C.R.I.2
  • 20
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Springer
    • Vapnik, N. N. 1995. The nature of statistical learning theory. New York: Springer.
    • (1995) New York
    • Vapnik, N.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.