-
4
-
-
33744770935
-
Learning theory: An approximation theory viewpoint
-
Cambridge University Press, Cambridge, UK
-
F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Camb. Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, UK, 2007.
-
(2007)
Camb. Monogr. Appl. Comput. Math.
-
-
Cucker, F.1
Zhou, D.X.2
-
7
-
-
58549105531
-
-
Wiley, Chichester
-
A. I. J. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, Wiley, Chichester, 2008.
-
(2008)
Engineering Design Via Surrogate Modelling: A Practical Guide
-
-
Forrester, A.I.J.1
Sóbester, A.2
Keane, A.J.3
-
8
-
-
79955060264
-
Quasi-polynomial tractability
-
M. Gnewuch and H. Woźniakowski, Quasi-polynomial tractability, J. Complexity, 27 (2011), pp. 312-330.
-
(2011)
J. Complexity
, vol.27
, pp. 312-330
-
-
Gnewuch, M.1
Woźniakowski, H.2
-
9
-
-
0003037370
-
Optimal approximation and error bounds
-
R. E. Langer, ed., University of Wisconsin Press
-
M. Golomb and H. F. Weinberger, Optimal approximation and error bounds, in On Numerical Approximation, R. E. Langer, ed., University of Wisconsin Press, 1959, pp. 117-190.
-
(1959)
On Numerical Approximation
, pp. 117-190
-
-
Golomb, M.1
Weinberger, H.F.2
-
10
-
-
0003684449
-
-
2nd ed. Springer Ser. Statist., Springer, New York
-
T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer Ser. Statist., Springer, New York, 2009.
-
(2009)
Elements of Statistical Learning: Data Mining Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
12
-
-
84861365193
-
-
SAS Institute, Cary, NC
-
JMP 9.0, SAS Institute, Cary, NC, 2010.
-
(2010)
JMP 9.0
-
-
-
13
-
-
64049103619
-
On the power of standard information for multivariate approximation in the worst case setting
-
F. Kuo, G. W. Wasilkowski, and H. Woźniakowski, On the power of standard information for multivariate approximation in the worst case setting, J. Approx. Theory, 158 (2009), pp. 97-125.
-
(2009)
J. Approx. Theory
, vol.158
, pp. 97-125
-
-
Kuo, F.1
Wasilkowski, G.W.2
Woźniakowski, H.3
-
14
-
-
0002567674
-
Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation
-
W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), pp. 94-114.
-
(1992)
J. Approx. Theory
, vol.70
, pp. 94-114
-
-
Madych, W.R.1
Nelson, S.A.2
-
18
-
-
72549087783
-
Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning
-
C. Rieger and B. Zwicknagl, Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning, Adv. Comput. Math., 32 (2008), pp. 103- 129.
-
(2008)
Adv. Comput. Math.
, vol.32
, pp. 103-129
-
-
Rieger, C.1
Zwicknagl, B.2
-
19
-
-
33646731541
-
Kernel techniques: From machine learning to meshless methods
-
DOI 10.1017/S0962492906270016, PII S0962492906270016
-
R. Schaback and H. Wendland, Kernel techniques: From machine learning to meshless methods, Acta Numer., 15 (2006), pp. 543-639. (Pubitemid 43748012)
-
(2006)
Acta Numerica
, vol.15
, pp. 543-639
-
-
Schaback, R.1
Wendland, H.2
-
20
-
-
46249099027
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
21
-
-
0001048297
-
Quadrature and interpolation formulas for tensor products of certain classes of functions
-
S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240-243.
-
(1963)
Dokl. Akad. Nauk SSSR
, vol.4
, pp. 240-243
-
-
Smolyak, S.A.1
-
24
-
-
33947372892
-
An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels
-
I. Steinwart, D. Hush, and C. Scovel, An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels, IEEE Trans. Inform. Theory, 52 (2006), pp. 4635- 4663.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 4635-4663
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
26
-
-
0004220675
-
-
Academic Press, New York
-
J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity, Academic Press, New York, 1988.
-
(1988)
Information-Based Complexity
-
-
Traub, J.F.1
Wasilkowski, G.W.2
Woźniakowski, H.3
-
27
-
-
0003241881
-
Spline models for observational data
-
SIAM, Philadelphia
-
G.Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conf. Ser. Appl. Math. 59, SIAM, Philadelphia, 1990.
-
(1990)
CBMS-NSF Regional Conf. Ser. Appl. Math.
, vol.59
-
-
Wahba, G.1
-
28
-
-
46449084805
-
Explicit error bounds of algorithms for multivariate tensor product problems
-
G. W. Wasilkowski and H. Woźniakowski, Explicit error bounds of algorithms for multivariate tensor product problems, J. Complexity, 11 (1995), pp. 1-56.
-
(1995)
J. Complexity
, vol.11
, pp. 1-56
-
-
Wasilkowski, G.W.1
Woźniakowski, H.2
-
30
-
-
0242350085
-
Gaussian interpolation revisited
-
K. Kopotun, T. Lyche, and M. Neamtu, eds., Vanderbilt University Press, Nashville, TN
-
H. Wendland, Gaussian interpolation revisited, in Trends in Approximation Theory, K. Kopotun, T. Lyche, and M. Neamtu, eds., Vanderbilt University Press, Nashville, TN, 2001, pp. 417-426.
-
(2001)
Trends in Approximation Theory
, pp. 417-426
-
-
Wendland, H.1
-
31
-
-
26644435618
-
Scattered data approximation
-
Cambridge University Press, Cambridge, UK
-
H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math. 17, Cambridge University Press, Cambridge, UK, 2005.
-
(2005)
Cambridge Monogr. Appl. Comput. Math.
, vol.17
-
-
Wendland, H.1
|