메뉴 건너뛰기




Volumn 7, Issue 5, 2012, Pages

The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability

Author keywords

[No Author keywords available]

Indexed keywords

BETA GALACTOSIDASE; CARRIER PROTEIN; GLUTAREDOXIN; IRON; PROTEIN CCC1; PROTEIN GRX4; PROTEIN YAP5; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR; CATION TRANSPORT PROTEIN; CCC1 PROTEIN, S CEREVISIAE; GRX4 PROTEIN, S CEREVISIAE; RCS1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; YAP5 PROTEIN, S CEREVISIAE;

EID: 84861203729     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0037434     Document Type: Article
Times cited : (56)

References (49)
  • 1
    • 0030857377 scopus 로고    scopus 로고
    • Iron homeostasis, oxidative stress, and DNA damage
    • Meneghini R, (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23: 783-792.
    • (1997) Free Radic Biol Med , vol.23 , pp. 783-792
    • Meneghini, R.1
  • 2
    • 40649120516 scopus 로고    scopus 로고
    • Response to iron deprivation in Saccharomyces cerevisiae
    • Philpott CC, Protchenko O, (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7: 20-27.
    • (2008) Eukaryot Cell , vol.7 , pp. 20-27
    • Philpott, C.C.1    Protchenko, O.2
  • 3
    • 70350657148 scopus 로고    scopus 로고
    • Iron acquisition and transcriptional regulation
    • Kaplan CD, Kaplan J, (2009) Iron acquisition and transcriptional regulation. Chem Rev 109: 4536-4552.
    • (2009) Chem Rev , vol.109 , pp. 4536-4552
    • Kaplan, C.D.1    Kaplan, J.2
  • 4
  • 5
    • 79959965423 scopus 로고    scopus 로고
    • War-Fe-re: iron at the core of fungal virulence and host immunity
    • Nevitt T, (2011) War-Fe-re: iron at the core of fungal virulence and host immunity. Biometals.
    • (2011) Biometals
    • Nevitt, T.1
  • 6
    • 2042546096 scopus 로고    scopus 로고
    • Balancing acts: molecular control of mammalian iron metabolism
    • Hentze MW, Muckenthaler MU, Andrews NC, (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117: 285-297.
    • (2004) Cell , vol.117 , pp. 285-297
    • Hentze, M.W.1    Muckenthaler, M.U.2    Andrews, N.C.3
  • 8
    • 77649315475 scopus 로고    scopus 로고
    • Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae
    • Ihrig J, Hausmann A, Hain A, Richter N, Hamza I, et al. (2010) Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 9: 460-471.
    • (2010) Eukaryot Cell , vol.9 , pp. 460-471
    • Ihrig, J.1    Hausmann, A.2    Hain, A.3    Richter, N.4    Hamza, I.5
  • 9
    • 44349183685 scopus 로고    scopus 로고
    • Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
    • Puig S, Vergara SV, Thiele DJ, (2008) Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 7: 555-564.
    • (2008) Cell Metab , vol.7 , pp. 555-564
    • Puig, S.1    Vergara, S.V.2    Thiele, D.J.3
  • 10
    • 77951996417 scopus 로고    scopus 로고
    • Metabolic response to iron deficiency in Saccharomyces cerevisiae
    • Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, et al. (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 285: 14823-14833.
    • (2010) J Biol Chem , vol.285 , pp. 14823-14833
    • Shakoury-Elizeh, M.1    Protchenko, O.2    Berger, A.3    Cox, J.4    Gable, K.5
  • 11
    • 12144289449 scopus 로고    scopus 로고
    • Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae
    • Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, et al. (2004) Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 15: 1233-1243.
    • (2004) Mol Biol Cell , vol.15 , pp. 1233-1243
    • Shakoury-Elizeh, M.1    Tiedeman, J.2    Rashford, J.3    Ferea, T.4    Demeter, J.5
  • 12
    • 11844257593 scopus 로고    scopus 로고
    • Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
    • Puig S, Askeland E, Thiele DJ, (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99-110.
    • (2005) Cell , vol.120 , pp. 99-110
    • Puig, S.1    Askeland, E.2    Thiele, D.J.3
  • 13
    • 34547763678 scopus 로고    scopus 로고
    • Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
    • Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y, (2007) Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol Biol Cell 18: 2980-2990.
    • (2007) Mol Biol Cell , vol.18 , pp. 2980-2990
    • Ueta, R.1    Fujiwara, N.2    Iwai, K.3    Yamaguchi-Iwai, Y.4
  • 14
    • 0037166279 scopus 로고    scopus 로고
    • Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae
    • Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R, (2002) Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 277: 18914-18918.
    • (2002) J Biol Chem , vol.277 , pp. 18914-18918
    • Yamaguchi-Iwai, Y.1    Ueta, R.2    Fukunaka, A.3    Sasaki, R.4
  • 15
    • 3142667831 scopus 로고    scopus 로고
    • Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis
    • Chen OS, Crisp RJ, Valachovic M, Bard M, Winge DR, et al. (2004) Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem 279: 29513-29518.
    • (2004) J Biol Chem , vol.279 , pp. 29513-29518
    • Chen, O.S.1    Crisp, R.J.2    Valachovic, M.3    Bard, M.4    Winge, D.R.5
  • 16
    • 44849098197 scopus 로고    scopus 로고
    • Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
    • Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, et al. (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283: 10276-10286.
    • (2008) J Biol Chem , vol.283 , pp. 10276-10286
    • Kumanovics, A.1    Chen, O.S.2    Li, L.3    Bagley, D.4    Adkins, E.M.5
  • 17
    • 78650949287 scopus 로고    scopus 로고
    • Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
    • Li H, Mapolelo DT, Dingra NN, Keller G, Riggs-Gelasco PJ, et al. (2011) Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J Biol Chem 286: 867-876.
    • (2011) J Biol Chem , vol.286 , pp. 867-876
    • Li, H.1    Mapolelo, D.T.2    Dingra, N.N.3    Keller, G.4    Riggs-Gelasco, P.J.5
  • 18
    • 70350070125 scopus 로고    scopus 로고
    • The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
    • Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, et al. (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48: 9569-9581.
    • (2009) Biochemistry , vol.48 , pp. 9569-9581
    • Li, H.1    Mapolelo, D.T.2    Dingra, N.N.3    Naik, S.G.4    Lees, N.S.5
  • 19
    • 33745872884 scopus 로고    scopus 로고
    • Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
    • Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, et al. (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281: 17661-17669.
    • (2006) J Biol Chem , vol.281 , pp. 17661-17669
    • Ojeda, L.1    Keller, G.2    Muhlenhoff, U.3    Rutherford, J.C.4    Lill, R.5
  • 20
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA, (2006) Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 119: 4554-4564.
    • (2006) J Cell Sci , vol.119 , pp. 4554-4564
    • Pujol-Carrion, N.1    Belli, G.2    Herrero, E.3    Nogues, A.4    de la Torre-Ruiz, M.A.5
  • 21
    • 0035800856 scopus 로고    scopus 로고
    • CCC1 is a transporter that mediates vacuolar iron storage in yeast
    • Li L, Chen OS, McVey Ward D, Kaplan J, (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276: 29515-29519.
    • (2001) J Biol Chem , vol.276 , pp. 29515-29519
    • Li, L.1    Chen, O.S.2    McVey Ward, D.3    Kaplan, J.4
  • 22
    • 38949162530 scopus 로고    scopus 로고
    • Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
    • Li L, Bagley D, Ward DM, Kaplan J, (2008) Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28: 1326-1337.
    • (2008) Mol Cell Biol , vol.28 , pp. 1326-1337
    • Li, L.1    Bagley, D.2    Ward, D.M.3    Kaplan, J.4
  • 23
    • 77952283586 scopus 로고    scopus 로고
    • The Yap family and its role in stress response
    • Rodrigues-Pousada C, Menezes RA, Pimentel C, (2010) The Yap family and its role in stress response. Yeast 27: 245-258.
    • (2010) Yeast , vol.27 , pp. 245-258
    • Rodrigues-Pousada, C.1    Menezes, R.A.2    Pimentel, C.3
  • 24
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257.
    • (2000) Mol Biol Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3    Carmel-Harel, O.4    Eisen, M.B.5
  • 25
    • 0036728274 scopus 로고    scopus 로고
    • The genomics of yeast responses to environmental stress and starvation
    • Gasch AP, Werner-Washburne M, (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2: 181-192.
    • (2002) Funct Integr Genomics , vol.2 , pp. 181-192
    • Gasch, A.P.1    Werner-Washburne, M.2
  • 26
    • 20444485752 scopus 로고    scopus 로고
    • Post-transcriptional regulation of the yeast high affinity iron transport system
    • Felice MR, De Domenico I, Li L, Ward DM, Bartok B, et al. (2005) Post-transcriptional regulation of the yeast high affinity iron transport system. J Biol Chem 280: 22181-22190.
    • (2005) J Biol Chem , vol.280 , pp. 22181-22190
    • Felice, M.R.1    de Domenico, I.2    Li, L.3    Ward, D.M.4    Bartok, B.5
  • 27
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • Lill R, (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831-838.
    • (2009) Nature , vol.460 , pp. 831-838
    • Lill, R.1
  • 28
    • 0034677901 scopus 로고    scopus 로고
    • CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation
    • Chen OS, Kaplan J, (2000) CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation. J Biol Chem 275: 7626-7632.
    • (2000) J Biol Chem , vol.275 , pp. 7626-7632
    • Chen, O.S.1    Kaplan, J.2
  • 29
    • 0042317107 scopus 로고    scopus 로고
    • Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26 S proteosome
    • Bertinato J, L'Abbe MR, (2003) Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26 S proteosome. J Biol Chem 278: 35071-35078.
    • (2003) J Biol Chem , vol.278 , pp. 35071-35078
    • Bertinato, J.1    L'Abbe, M.R.2
  • 31
    • 34447518686 scopus 로고    scopus 로고
    • The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis
    • Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F, (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581: 3598-3607.
    • (2007) FEBS Lett , vol.581 , pp. 3598-3607
    • Toledano, M.B.1    Kumar, C.2    Le Moan, N.3    Spector, D.4    Tacnet, F.5
  • 32
    • 79952779937 scopus 로고    scopus 로고
    • Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions
    • Lin H, Li L, Jia X, Ward DM, Kaplan J, (2011) Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J Biol Chem 286: 3851-3862.
    • (2011) J Biol Chem , vol.286 , pp. 3851-3862
    • Lin, H.1    Li, L.2    Jia, X.3    Ward, D.M.4    Kaplan, J.5
  • 33
    • 80055074494 scopus 로고    scopus 로고
    • Yap5 Regulated Transcription of the TYW1 Gene Protects Yeast from High Iron Toxicity
    • Li L, Jia X, Ward DM, Kaplan J, (2011) Yap5 Regulated Transcription of the TYW1 Gene Protects Yeast from High Iron Toxicity. J Biol Chem 286: 38488-38497.
    • (2011) J Biol Chem , vol.286 , pp. 38488-38497
    • Li, L.1    Jia, X.2    Ward, D.M.3    Kaplan, J.4
  • 34
    • 0036894656 scopus 로고    scopus 로고
    • Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae
    • Horak CE, Luscombe NM, Qian J, Bertone P, Piccirrillo S, et al. (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16: 3017-3033.
    • (2002) Genes Dev , vol.16 , pp. 3017-3033
    • Horak, C.E.1    Luscombe, N.M.2    Qian, J.3    Bertone, P.4    Piccirrillo, S.5
  • 35
    • 33644873683 scopus 로고    scopus 로고
    • The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
    • Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, et al. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34: 446-451.
    • (2006) Nucleic Acids Res , vol.34 , pp. 446-451
    • Teixeira, M.C.1    Monteiro, P.2    Jain, P.3    Tenreiro, S.4    Fernandes, A.R.5
  • 36
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799-804.
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1    Rinaldi, N.J.2    Robert, F.3    Odom, D.T.4    Bar-Joseph, Z.5
  • 37
    • 0034616016 scopus 로고    scopus 로고
    • Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake
    • Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, et al. (2000) Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275: 10709-10715.
    • (2000) J Biol Chem , vol.275 , pp. 10709-10715
    • Yun, C.W.1    Ferea, T.2    Rashford, J.3    Ardon, O.4    Brown, P.O.5
  • 38
    • 21244437042 scopus 로고    scopus 로고
    • Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae
    • Lee A, Henras AK, Chanfreau G, (2005) Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae. Mol Cell 19: 39-51.
    • (2005) Mol Cell , vol.19 , pp. 39-51
    • Lee, A.1    Henras, A.K.2    Chanfreau, G.3
  • 39
    • 79958211268 scopus 로고    scopus 로고
    • The Multi-domain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group
    • Hoffmann B, Uzarska MA, Berndt C, Godoy JR, Haunhorst P, et al. (2011) The Multi-domain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group. Antioxid Redox Signal 15: 19-30.
    • (2011) Antioxid Redox Signal , vol.15 , pp. 19-30
    • Hoffmann, B.1    Uzarska, M.A.2    Berndt, C.3    Godoy, J.R.4    Haunhorst, P.5
  • 40
    • 77957674907 scopus 로고    scopus 로고
    • Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster
    • Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, et al. (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 12: 373-385.
    • (2010) Cell Metab , vol.12 , pp. 373-385
    • Muhlenhoff, U.1    Molik, S.2    Godoy, J.R.3    Uzarska, M.A.4    Richter, N.5
  • 41
    • 79956130002 scopus 로고    scopus 로고
    • Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control
    • Kumar C, Igbaria A, D'Autreaux B, Planson AG, Junot C, et al. (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. Embo J 30: 2044-2056.
    • (2011) Embo J , vol.30 , pp. 2044-2056
    • Kumar, C.1    Igbaria, A.2    D'Autreaux, B.3    Planson, A.G.4    Junot, C.5
  • 43
    • 0030712874 scopus 로고    scopus 로고
    • Yap, a Novel Family of Eight bZIP Proteins in Saccharomyces cerevisiae with Distinct Biological Functions
    • Fernandes L, Rodrigues-Pousada C, Struhl K, (1997) Yap, a Novel Family of Eight bZIP Proteins in Saccharomyces cerevisiae with Distinct Biological Functions. Mol Cell Biol 17: 6982-6993.
    • (1997) Mol Cell Biol , vol.17 , pp. 6982-6993
    • Fernandes, L.1    Rodrigues-Pousada, C.2    Struhl, K.3
  • 45
    • 34447560961 scopus 로고    scopus 로고
    • Analysis of Gene Expression Data Using BRB-Array Tools
    • Simon R, Lam A, Li MC, Ngan M, Menenzes S, et al. (2007) Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform 3: 11-17.
    • (2007) Cancer Inform , vol.3 , pp. 11-17
    • Simon, R.1    Lam, A.2    Li, M.C.3    Ngan, M.4    Menenzes, S.5
  • 46
    • 0037311919 scopus 로고    scopus 로고
    • TM4: a free, open-source system for microarray data management and analysis
    • Saeed AI, Sharov V, White J, Li J, Liang W, et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378.
    • (2003) Biotechniques , vol.34 , pp. 374-378
    • Saeed, A.I.1    Sharov, V.2    White, J.3    Li, J.4    Liang, W.5
  • 47
    • 33947545767 scopus 로고    scopus 로고
    • The central role of PDR1 in the foundation of yeast drug resistance
    • Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, et al. (2007) The central role of PDR1 in the foundation of yeast drug resistance. J Biol Chem 282: 5063-5074.
    • (2007) J Biol Chem , vol.282 , pp. 5063-5074
    • Fardeau, V.1    Lelandais, G.2    Oldfield, A.3    Salin, H.4    Lemoine, S.5
  • 48
    • 2442564717 scopus 로고    scopus 로고
    • Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system
    • Mockli N, Auerbach D, (2004) Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques 36: 872-876.
    • (2004) Biotechniques , vol.36 , pp. 872-876
    • Mockli, N.1    Auerbach, D.2
  • 49
    • 50949128387 scopus 로고    scopus 로고
    • Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress
    • Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, et al. (2008) Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochem J 414: 301-311.
    • (2008) Biochem J , vol.414 , pp. 301-311
    • Menezes, R.A.1    Amaral, C.2    Batista-Nascimento, L.3    Santos, C.4    Ferreira, R.B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.