메뉴 건너뛰기




Volumn 39, Issue 12, 2012, Pages 10933-10942

Recurrent sparse support vector regression machines trained by active learning in the time-domain

Author keywords

Active learning; Recurrent models; Sparse models; Support vector machines; Support vector regression

Indexed keywords

ACTIVE LEARNING; ACTIVE LEARNING PRINCIPLES; SPARSE REPRESENTATION; SPARSE SOLUTIONS; SUPPORT VECTOR; SUPPORT VECTOR REGRESSION (SVR); SUPPORT VECTOR REGRESSION MACHINES; SUPPORT VECTOR REGRESSION METHOD; TIME DOMAIN; TIME-DOMAIN DATA; TRAINING DATA; TRAINING TIME;

EID: 84861201931     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.03.031     Document Type: Article
Times cited : (19)

References (54)
  • 2
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithms and accelerating convergence
    • A.F. Atiya, and A.G. Parlos New results on recurrent network training: Unifying the algorithms and accelerating convergence IEEE Transactions on Neural Networks 11 2000 697 709
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 7
    • 84861193661 scopus 로고    scopus 로고
    • Short-Term Traffic Flow Predication Based on PSO-SVM
    • Q. Peng, K.C.P. Wang, Y. Qiu, Y. Pu, X. Luo, B. Shuai, American Society of Civil Engineers (ASCE) Chengdu, China
    • C. Cao, and J. Xu Short-Term Traffic Flow Predication Based on PSO-SVM Q. Peng, K.C.P. Wang, Y. Qiu, Y. Pu, X. Luo, B. Shuai, Proceedings of the First International Conference on Transportation Engineering Vol. 246 2007 American Society of Civil Engineers (ASCE) Chengdu, China 28
    • (2007) Proceedings of the First International Conference on Transportation Engineering , vol.246 , pp. 28
    • Cao, C.1    Xu, J.2
  • 10
    • 67349183369 scopus 로고    scopus 로고
    • Semantic analysis of real-world images using support vector machine
    • C.-Y. Chang, H.-J. Wang, and C.-F. Li Semantic analysis of real-world images using support vector machine Expert Systems with Applications 36 7 2009 10560 10569
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10560-10569
    • Chang, C.-Y.1    Wang, H.-J.2    Li, C.-F.3
  • 11
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • C. Cortes, and V. Vapnik Support-Vector Networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 29144499905 scopus 로고    scopus 로고
    • Working Set Selection Using Second Order Information for Training Support Vector Machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin Working Set Selection Using Second Order Information for Training Support Vector Machines Journal of Machine Learning Research 6 2005 1889 1918
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 16
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • iJCNN 2005
    • A. Graves, and J. Schmidhuber Framewise phoneme classification with bidirectional LSTM and other neural network architectures Neural Networks 18 5-6 2005 602 610 iJCNN 2005
    • (2005) Neural Networks , vol.18 , Issue.56 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 17
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • B. Guo, S. Gunn, R. Damper, and J. Nelson Customizing kernel functions for SVM-based hyperspectral image classification IEEE Transactions on Image Processing 17 4 2008 622 629
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.2    Damper, R.3    Nelson, J.4
  • 18
    • 74449090940 scopus 로고    scopus 로고
    • A method to sparsify the solution of support vector regression
    • G. Guo, J.-S. Zhang, and G.-Y. Zhang A method to sparsify the solution of support vector regression Neural Computing & Applications 19 1 2010 115 122
    • (2010) Neural Computing & Applications , vol.19 , Issue.1 , pp. 115-122
    • Guo, G.1    Zhang, J.-S.2    Zhang, G.-Y.3
  • 19
    • 33847644550 scopus 로고    scopus 로고
    • Hierarchically SVM classification based on support vector clustering method and its application to document categorization
    • P.-Y. Hao, J.-H. Chiang, and Y.-K. Tu Hierarchically SVM classification based on support vector clustering method and its application to document categorization Expert Systems with Applications 33 3 2007 627 635
    • (2007) Expert Systems with Applications , vol.33 , Issue.3 , pp. 627-635
    • Hao, P.-Y.1    Chiang, J.-H.2    Tu, Y.-K.3
  • 21
    • 73949157176 scopus 로고    scopus 로고
    • Echo state networks with filter neurons and a delay & sum readout
    • G. Holzmann, and H. Hauser Echo state networks with filter neurons and a delay & sum readout Neural Networks 23 2 2010 244 256
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 244-256
    • Holzmann, G.1    Hauser, H.2
  • 24
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky- integrator neurons
    • echo State Networks and Liquid State Machines
    • H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert Optimization and applications of echo state networks with leaky- integrator neurons Neural Networks 20 3 2007 335 352 echo State Networks and Liquid State Machines
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 30
    • 73949139054 scopus 로고    scopus 로고
    • Ranking and selecting terms for text categorization via SVM discriminate boundary
    • T.-F. Kuo, and Y. Yajima Ranking and selecting terms for text categorization via SVM discriminate boundary International Journal of Intelligent Systems 25 2 2010 137 154
    • (2010) International Journal of Intelligent Systems , vol.25 , Issue.2 , pp. 137-154
    • Kuo, T.-F.1    Yajima, Y.2
  • 31
    • 77956611805 scopus 로고    scopus 로고
    • Tax forecasting theory and model based on SVM optimized by PSO
    • L.-x. Liu, Y.-q. Zhuang, and X.-y. Liu Tax forecasting theory and model based on SVM optimized by PSO Expert Systems with Applications 38 1 2011 116 120
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 116-120
    • Liu, L.-X.1    Zhuang, Y.-Q.2    Liu, X.-Y.3
  • 32
    • 0040833010 scopus 로고    scopus 로고
    • The ziggurat method for generating random variables
    • G. Marsaglia, and W.W. Tsang The ziggurat method for generating random variables Journal of Statistical Software 5 8 2000 1 7
    • (2000) Journal of Statistical Software , vol.5 , Issue.8 , pp. 1-7
    • Marsaglia, G.1    Tsang, W.W.2
  • 33
    • 3342875865 scopus 로고    scopus 로고
    • Parameterizing parallel multiplicative lagged-Fibonacci generators
    • M. Mascagni, and A. Srinivasan Parameterizing parallel multiplicative lagged-Fibonacci generators Parallel Computing 30 7 2004 899 916
    • (2004) Parallel Computing , vol.30 , Issue.7 , pp. 899-916
    • Mascagni, M.1    Srinivasan, A.2
  • 34
    • 76749091461 scopus 로고    scopus 로고
    • Recursive bayesian recurrent neural networks for time-series modeling
    • D. Mirikitani, and N. Nikolaev Recursive bayesian recurrent neural networks for time-series modeling IEEE Transactions on Neural Networks 21 2 2010 262 274
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.2 , pp. 262-274
    • Mirikitani, D.1    Nikolaev, N.2
  • 35
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. Narendra, and K. Parthasarathy Identification and control of dynamical systems using neural networks IEEE Transactions on Neural Networks 1 1 1990 4 27
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 36
    • 0032163862 scopus 로고    scopus 로고
    • Solving ill-conditioned and singular linear systems: A tutorial on regularization
    • A. Neumaier Solving ill-conditioned and singular linear systems: A tutorial on regularization SIAM Review 40 3 1998 636 666
    • (1998) SIAM Review , vol.40 , Issue.3 , pp. 636-666
    • Neumaier, A.1
  • 37
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA
    • Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods: Support vector learning, MIT Press, Cambridge, MA, USA, (pp. 185-208).
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 45
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.-S. Shin, T.S. Lee, and H.-J. Kim An application of support vector machines in bankruptcy prediction model Expert Systems with Applications 28 1 2005 127 135
    • (2005) Expert Systems with Applications , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 46
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Statistics and Computing 14 3 2004 199 222
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 49
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • M.E. Tipping Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Reserach 1 2001 211 244
    • (2001) Journal of Machine Learning Reserach , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 50
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, and D. Koller Support vector machine active learning with applications to text classification Journal of Machine Learning Research 2 2002 45 66
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 51
    • 84887252594 scopus 로고    scopus 로고
    • Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing
    • MIT Press
    • Vapnik, V.; Golowich, S. E.; Smola, A. (1996). Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. In Advances in neural information processing systems 9, MIT Press, (pp. 281-287).
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 52
    • 34548479280 scopus 로고    scopus 로고
    • A particle swarm pattern search method for bound constrained global optimization
    • A. Vaz, and L. Vicente A particle swarm pattern search method for bound constrained global optimization Journal of Global Optimization 39 2 2007 197 219
    • (2007) Journal of Global Optimization , vol.39 , Issue.2 , pp. 197-219
    • Vaz, A.1    Vicente, L.2
  • 53
    • 34249819041 scopus 로고    scopus 로고
    • Decoupled echo state networks with lateral inhibition
    • Y. Xue, L. Yang, and S. Haykin Decoupled echo state networks with lateral inhibition Neural Networks 20 3 2007 365 376
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 365-376
    • Xue, Y.1    Yang, L.2    Haykin, S.3
  • 54
    • 33750453728 scopus 로고    scopus 로고
    • Clustering support vector machines for protein local structure prediction
    • W. Zhong, J. He, R. Harrison, P.C. Tai, and Y. Pan Clustering support vector machines for protein local structure prediction Expert Systems with Applications 32 2 2007 518 526
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 518-526
    • Zhong, W.1    He, J.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.