메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

System identification using multilayer differential neural networks: A new result

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84861038833     PISSN: 1110757X     EISSN: 16870042     Source Type: Journal    
DOI: 10.1155/2012/529176     Document Type: Article
Times cited : (17)

References (35)
  • 1
    • 28844494949 scopus 로고    scopus 로고
    • Past, present and future of nonlinear system identification in structural dynamics
    • DOI 10.1016/j.ymssp.2005.04.008, PII S0888327005000828
    • Kerschen G., Worden K., Vakakis A. F., Golinval J. C., Past, present and future of nonlinear system identification in structural dynamics Mechanical Systems and Signal Processing 2006 20 3 505 592 (Pubitemid 41766672)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.3 , pp. 505-592
    • Kerschen, G.1    Worden, K.2    Vakakis, A.F.3    Golinval, J.-C.4
  • 3
    • 77953495947 scopus 로고    scopus 로고
    • Identification of a Duffing oscillator under different types of excitation
    • Gandino E., Marchesiello S., Identification of a Duffing oscillator under different types of excitation Mathematical Problems in Engineering 2010 2010 15
    • (2010) Mathematical Problems in Engineering , vol.2010 , pp. 15
    • Gandino, E.1    Marchesiello, S.2
  • 4
    • 81555219640 scopus 로고    scopus 로고
    • System identification of MEMS vibratory gyroscope sensor
    • Fei J., Yang Y., System identification of MEMS vibratory gyroscope sensor Mathematical Problems in Engineering 2011 2011 12
    • (2011) Mathematical Problems in Engineering , vol.2011 , pp. 12
    • Fei, J.1    Yang, Y.2
  • 9
    • 0347603423 scopus 로고    scopus 로고
    • Nonlinear system identification using neural networks trained with natural gradient descent
    • Ibnkahla M., Nonlinear system identification using neural networks trained with natural gradient descent Eurasip Journal on Applied Signal Processing 2003 2003 12 1229 1237
    • (2003) Eurasip Journal on Applied Signal Processing , vol.2003 , Issue.12 , pp. 1229-1237
    • Ibnkahla, M.1
  • 11
    • 79959233502 scopus 로고    scopus 로고
    • Hysteresis nonlinearity identification using new Preisach model-based artificial neural network approach
    • Zakerzadeh M. R., Firouzi M., Sayyaadi H., Shouraki S. B., Hysteresis nonlinearity identification using new Preisach model-based artificial neural network approach Journal of Applied Mathematics 2011 2011 22
    • (2011) Journal of Applied Mathematics , vol.2011 , pp. 22
    • Zakerzadeh, M.R.1    Firouzi, M.2    Sayyaadi, H.3    Shouraki, S.B.4
  • 12
    • 84861063699 scopus 로고    scopus 로고
    • Using artificial neural networks to predict direct solar irradiation
    • Mubiru J., Using artificial neural networks to predict direct solar irradiation Advances in Artificial Neural Systems 2011 2011 6
    • (2011) Advances in Artificial Neural Systems , vol.2011 , pp. 6
    • Mubiru, J.1
  • 13
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G., Approximation by superpositions of a sigmoidal function Mathematics of Control, Signals, and Systems 1989 2 4 303 314
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • Hornik K., Stinchcombe M., White H., Multilayer feedforward networks are universal approximators Neural Networks 1989 2 5 359 366 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 15
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park J., Sandberg I. W., Universal approximation using radial-basis-function networks Neural Computation 1991 3 246 257
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 20
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • DOI 10.1109/72.80202
    • Narendra K. S., Parthasarathy K., Identification and control of dynamical systems using neural networks IEEE Transactions on Neural Networks 1990 1 1 4 27 (Pubitemid 20689507)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra Kumpati, S.1    Parthasarathy Kannan2
  • 21
    • 0026954775 scopus 로고
    • Neural networks for control systems - A survey
    • DOI 10.1016/0005-1098(92)90053-I
    • Hunt K. J., Sbarbaro D., bikowski R., Gawthrop P. J., Neural networks for control systemsa survey Automatica 1992 28 6 1083 1112 (Pubitemid 23587964)
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 23
  • 27
    • 0036849810 scopus 로고    scopus 로고
    • Dynamic system identification via recurrent multilayer perceptrons
    • DOI 10.1016/S0020-0255(02)00207-4, PII S0020025502002074
    • Li X., Yu W., Dynamic system identification via recurrent multilayer perceptrons Information Sciences 2002 147 14 45 63 (Pubitemid 35349786)
    • (2002) Information Sciences , vol.147 , Issue.1-4 , pp. 45-63
    • Li, X.1    Yu, W.2
  • 28
    • 0037215749 scopus 로고    scopus 로고
    • Passivity analysis for dynamic multilayer neuro identifier
    • Yu W., Passivity analysis for dynamic multilayer neuro identifier IEEE Transactions on Circuits and Systems. I 2003 50 1 173 178
    • (2003) IEEE Transactions on Circuits and Systems. i , vol.50 , Issue.1 , pp. 173-178
    • Yu, W.1
  • 29
    • 33750311824 scopus 로고    scopus 로고
    • Multiple recurrent neural networks for stable adaptive control
    • DOI 10.1016/j.neucom.2005.12.122, PII S0925231206000312
    • Yu W., Multiple recurrent neural networks for stable adaptive control Neurocomputing 2006 70 13 430 444 (Pubitemid 44615767)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 430-444
    • Yu, W.1
  • 30
    • 0015206454 scopus 로고
    • Least squares stationary optimal control and the algebraic Riccati equation
    • Willems J. C., Least squares stationary optimal control and the algebraic Riccati equation IEEE Transactions on Automatic Control 1971 16 621 634
    • (1971) IEEE Transactions on Automatic Control , vol.16 , pp. 621-634
    • Willems, J.C.1
  • 31
    • 84861058140 scopus 로고    scopus 로고
    • Robust adaptive control via neural linearization and compensation
    • Carmona R., Yu W., Robust adaptive control via neural linearization and compensation Journal of Control Science and Engineering 2012 2012 9
    • (2012) Journal of Control Science and Engineering , vol.2012 , pp. 9
    • Carmona, R.1    Yu, W.2
  • 32
    • 33947583893 scopus 로고    scopus 로고
    • Stability analysis of nonlinear system identification via delayed neural networks
    • DOI 10.1109/TCSII.2006.886464
    • de Jess Rubio J., Yu W., Stability analysis of nonlinear system identification via delayed neural networks IEEE Transactions on Circuits and Systems II 2007 54 2 161 165 (Pubitemid 46477682)
    • (2007) IEEE Transactions on Circuits and Systems II: Express Briefs , vol.54 , Issue.2 , pp. 161-165
    • De Jesus Rubio, J.1    Yu, W.2
  • 33
    • 79952195647 scopus 로고    scopus 로고
    • Uniformly stable backpropagation algorithm to train a feedforward neural network
    • Rubio J. D. J., Angelov P., Pacheco J., Uniformly stable backpropagation algorithm to train a feedforward neural network IEEE Transactions on Neural Networks 2011 22 3 356 366
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.3 , pp. 356-366
    • Rubio, J.D.J.1    Angelov, P.2    Pacheco, J.3
  • 35
    • 75349102205 scopus 로고    scopus 로고
    • Control of nuclear research reactors based on a generalized Hopfield neural network
    • Humberto Pérez-Cruz J., Poznyak A., Control of nuclear research reactors based on a generalized Hopfield neural network Intelligent Automation and Soft Computing 2010 16 1 39 60
    • (2010) Intelligent Automation and Soft Computing , vol.16 , Issue.1 , pp. 39-60
    • Humberto Pérez-Cruz, J.1    Poznyak, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.