메뉴 건너뛰기




Volumn , Issue , 2012, Pages 599-608

Modeling and predicting behavioral dynamics on the web

Author keywords

Behavioral analysis; Predictive behavioral models

Indexed keywords

BASELINE MODELS; BEHAVIORAL ANALYSIS; BEHAVIORAL DYNAMICS; BEHAVIORAL MODEL; CONSTRUCT MODELS; LEARNING PROCEDURES; PREDICTION MODEL; QUERY SUGGESTION; TEMPORAL MODELING; TIME VARYING; USER BEHAVIORS;

EID: 84860864146     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2187836.2187918     Document Type: Conference Paper
Times cited : (112)

References (22)
  • 2
    • 35348877424 scopus 로고    scopus 로고
    • Why we search: Visualizing and predicting user behavior
    • E. Adar, D. S. Weld, B. N. Bershad, and S. D. Gribble. Why we search: visualizing and predicting user behavior. In WWW, 2007.
    • (2007) WWW
    • Adar, E.1    Weld, D.S.2    Bershad, B.N.3    Gribble, S.D.4
  • 5
    • 33646695921 scopus 로고    scopus 로고
    • Semantic similarity between search engine queries using temporal correlation
    • S. Chien and N. Immorlica. Semantic similarity between search engine queries using temporal correlation. In WWW, 2005.
    • (2005) WWW
    • Chien, S.1    Immorlica, N.2
  • 7
    • 70349100410 scopus 로고    scopus 로고
    • Integration of news content into web results
    • F. Diaz. Integration of news content into web results. In WSDM, 2009.
    • (2009) WSDM
    • Diaz, F.1
  • 11
    • 0242540464 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • J. Kleinberg. Bursty and hierarchical structure in streams. In KDD, 2002.
    • (2002) KDD
    • Kleinberg, J.1
  • 13
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative ffltering with temporal dynamics
    • Y. Koren. Collaborative ffltering with temporal dynamics. In KDD, 2009.
    • (2009) KDD
    • Koren, Y.1
  • 16
    • 83055177107 scopus 로고    scopus 로고
    • A word at a time: Computing word relatedness using temporal semantic analysis
    • K. Radinsky, E. Agichtein, E. Gabrilovich, and S. Markovitch. A word at a time: Computing word relatedness using temporal semantic analysis. In WWW, 2011.
    • (2011) WWW
    • Radinsky, K.1    Agichtein, E.2    Gabrilovich, E.3    Markovitch, S.4
  • 17
    • 62949105536 scopus 로고    scopus 로고
    • Predicting the news of tomorrow using patterns in web search queries
    • K. Radinsky, S. Davidovich, and S. Markovitch. Predicting the news of tomorrow using patterns in web search queries. In WI, 2008.
    • (2008) WI
    • Radinsky, K.1    Davidovich, S.2    Markovitch, S.3
  • 18
    • 80052121224 scopus 로고    scopus 로고
    • Detecting seasonal queries by time-series analysis
    • M. Shokouhi. Detecting seasonal queries by time-series analysis. In SIGIR, 2011.
    • (2011) SIGIR
    • Shokouhi, M.1
  • 20
    • 3142717571 scopus 로고    scopus 로고
    • Identifying similarities, periodicities and bursts for online search queries
    • M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and bursts for online search queries. In SIGMOD, 2004.
    • (2004) SIGMOD
    • Vlachos, M.1    Meek, C.2    Vagena, Z.3    Gunopulos, D.4
  • 21
    • 0037937585 scopus 로고    scopus 로고
    • Mining longitudinal web queries: Trends and patterns
    • P. Wang, M. W. Berry, and Y. Yang. Mining longitudinal web queries: trends and patterns. JASIST, 54:743-758, 2003.
    • (2003) JASIST , vol.54 , pp. 743-758
    • Wang, P.1    Berry, M.W.2    Yang, Y.3
  • 22
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, 2011.
    • (2011) WSDM
    • Yang, J.1    Leskovec, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.