메뉴 건너뛰기




Volumn 8314, Issue , 2012, Pages

A multi-dimensional model for localization of highly variable objects

Author keywords

Discriminative training; Generalized Hough transform; Multi dimensional model; Object localization

Indexed keywords

ANATOMICAL OBJECTS; ARM POSITION; DATA SETS; DISCRIMINATIVE TRAINING; GENERALIZED HOUGH TRANSFORM; HIGHER-DIMENSIONAL; LOCALIZATION ERRORS; LOCALIZATION MODELS; MULTI-DIMENSIONAL MODEL; NEW MODEL; OBJECT LOCALIZATION; ON-THE-FLY; SUBMODELS; TARGET OBJECT; TEST DATA; THE STANDARD MODEL;

EID: 84860738470     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.910900     Document Type: Conference Paper
Times cited : (3)

References (7)
  • 1
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features
    • Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., and Comaniciu, D., "Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features," IEEE Trans. Med. Imaging. 27(11), 1668-1681 (2008).
    • (2008) IEEE Trans. Med. Imaging. , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5
  • 5
    • 40549127631 scopus 로고    scopus 로고
    • ch. The boosting approach to machine learning: An overview Springer
    • Schapire, R. E., [Nonlinear Estimation and Classification], ch. The boosting approach to machine learning: An overview, 149-172, Springer (2003).
    • (2003) Nonlinear Estimation and Classification , pp. 149-172
    • Schapire, R.E.1
  • 6
    • 0019397313 scopus 로고
    • Generalizing the hough transform to detect arbitrary shapes
    • Ballard, D. H., "Generalizing the Hough transform to detect arbitrary shapes," Pattern Recognit. 13(2), 111-122 (1981).
    • (1981) Pattern Recognit. , vol.13 , Issue.2 , pp. 111-122
    • Ballard, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.