메뉴 건너뛰기




Volumn 14, Issue SUPPL.1, 2010, Pages

Experimental and artificial neural network approach for forecasting of traffic air pollution in urban areas: The case of subotica

Author keywords

Artificial neural network; Forecasting PM10 concentrations; Meteorological parameters; PM10

Indexed keywords

AIR QUALITY; FOG; METEOROLOGY; URBAN PLANNING;

EID: 84860672721     PISSN: 03549836     EISSN: None     Source Type: Journal    
DOI: 10.2298/tsci100507032v     Document Type: Article
Times cited : (9)

References (17)
  • 1
    • 17644376480 scopus 로고    scopus 로고
    • Comparison of Four Machine Learning Methods for Predicting PM10 Concentrations in Helsinki
    • Zickus, M., Greig, A., J., Niranjan, M., Comparison of Four Machine Learning Methods for Predicting PM10 Concentrations in Helsinki, Finland, Water, Air, and Soil Pollution: focus 2: pp. 717-729, 2002
    • (2002) Finland, Water, Air, and Soil Pollution: focus 2 , pp. 717-729
    • Zickus, M.1    Greig, A.J.2    Niranjan, M.3
  • 2
    • 85184635306 scopus 로고    scopus 로고
    • Directive 2008/50/EC of the European Parliament and of the Council 0f 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe
    • ***, No. L 152/1. EC
    • ***, Directive 2008/50/EC of the European Parliament and of the Council 0f 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe, Official Journal of the European Communities, No. L 152/1. EC, 2008
    • (2008) Official Journal of the European Communities
  • 3
    • 84869741771 scopus 로고    scopus 로고
    • Council Decision 97/101/EC of 27 January 1997 Establishing a Reciprocal Exchange of Information and Data from Networks and Individual Stations Measuring Ambient Air Pollution within the Member States
    • ***, No. L 35/14. EC
    • ***, Council Decision 97/101/EC of 27 January 1997 Establishing a Reciprocal Exchange of Information and Data from Networks and Individual Stations Measuring Ambient Air Pollution within the Member States, Official Journal of the European Communities, No. L 35/14. EC, 1997
    • (1997) Official Journal of the European Communities
  • 4
    • 34248364543 scopus 로고    scopus 로고
    • Influence of Spectral Solar Irradiance on the Formation of New Partiles in the Continental Boundary Layer
    • Boy, M., Kulmala, M., Influence of Spectral Solar Irradiance on the Formation of New Partiles in the Continental Boundary Layer, Atmos. Chem. Phys. Discuss., 2 (2002), 5, pp. 1317-1350
    • (2002) Atmos. Chem. Phys. Discuss. , vol.2 , Issue.5 , pp. 1317-1350
    • Boy, M.1    Kulmala, M.2
  • 6
    • 0003994186 scopus 로고    scopus 로고
    • ***, 15.07
    • ***, The Mathworks, http://www.mathworks.com/products/ (15.07.2009)
    • (2009) The Mathworks
  • 7
    • 34248390876 scopus 로고    scopus 로고
    • Development and Assessment of Neural Network and Multiple Regression Models in Order to Predict PM10 Levels in a Medium-Sized Mediterranean City
    • Papanastasiou, D. K., Melas, D., Kioutsioukis, I., Development and Assessment of Neural Network and Multiple Regression Models in Order to Predict PM10 Levels in a Medium-Sized Mediterranean City, Water Air Soil Pollution, 182 (2007), 1-4, pp. 325-334
    • (2007) Water Air Soil Pollution , vol.182 , Issue.1-4 , pp. 325-334
    • Papanastasiou, D.K.1    Melas, D.2    Kioutsioukis, I.3
  • 8
    • 32544456773 scopus 로고    scopus 로고
    • Air Quality Forecasting Using a Hybrid Autoregressive and Non-linear Model
    • Asha, B. C., Devotta, S., Air Quality Forecasting Using a Hybrid Autoregressive and Non-linear Model, Atmospheric Environment, 40 (2005), 10, pp. 1774-1780
    • (2005) Atmospheric Environment , vol.40 , Issue.10 , pp. 1774-1780
    • Asha, B.C.1    Devotta, S.2
  • 9
    • 53949114438 scopus 로고    scopus 로고
    • A Hybrid ARIMA and Artificial Neural Networks Model to Forecast Particulate Matter in Urban Areas: The Case of Temuco
    • Luis, A. D-R., et al., A Hybrid ARIMA and Artificial Neural Networks Model to Forecast Particulate Matter in Urban Areas: The Case of Temuco, Chile Atmospheric Environment, 42 (2008), 35, pp. 8331-8340
    • (2008) Chile Atmospheric Environment , vol.42 , Issue.35 , pp. 8331-8340
    • Luis, A.D.-R.1
  • 10
    • 32944468566 scopus 로고    scopus 로고
    • Statistical Models for the Prediction of Respirable Suspended Particulate Matter in Urban Cities
    • Goyal, P., Chan, T., Neeru, J., Statistical Models for the Prediction of Respirable Suspended Particulate Matter in Urban Cities, Atmospheric Environment, 40 (2006) 11, pp. 2068 - 2077
    • (2006) Atmospheric Environment , vol.40 , Issue.11 , pp. 2068-2077
    • Goyal, P.1    Chan, T.2    Neeru, J.3
  • 11
    • 67449142558 scopus 로고    scopus 로고
    • A Simple Feed-forward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model
    • Casseli, M., Trizio, L., de Gennaro, G., Ielpo, P., A Simple Feed-forward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model, Water Air Soil Pollutant, 201 (2008), 1-4, pp. 365-377
    • (2008) Water Air Soil Pollutant , vol.201 , Issue.1-4 , pp. 365-377
    • Casseli, M.1    Trizio, L.2    de Gennaro, G.3    Ielpo, P.4
  • 12
    • 33645798115 scopus 로고    scopus 로고
    • An Integrated Neural Network Model for PM10 Forecasting
    • Perez, P., Reyes, J., An Integrated Neural Network Model for PM10 Forecasting, Atmospheric Environment, 40 (2006), 16, pp. 2845-2851
    • (2006) Atmospheric Environment , vol.40 , Issue.16 , pp. 2845-2851
    • Perez, P.1    Reyes, J.2
  • 13
    • 0034739912 scopus 로고    scopus 로고
    • Neural Networks and Periodic Components Used in Air Quality Forecasting
    • Kolehmainen, M., Martikainen, H., Ruuskanen, J., Neural Networks and Periodic Components Used in Air Quality Forecasting, Atmospheric Environment, 35 (2001), 5, pp. 815-825
    • (2001) Atmospheric Environment , vol.35 , Issue.5 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 14
    • 0032146282 scopus 로고    scopus 로고
    • Development of a Regression Model to Forecast Ground-Level Ozone Concentration in Louisville
    • KY
    • Hubbard, M., Cobourn, G., Development of a Regression Model to Forecast Ground-Level Ozone Concentration in Louisville, KY, Atmospheric Environment, 32 (1998) 14-15, pp. 2637-2647
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2637-2647
    • Hubbard, M.1    Cobourn, G.2
  • 15
    • 0033962994 scopus 로고    scopus 로고
    • Statistical Surface Ozone Models: An Improved Methodology to Account for Non-Linear Behavior
    • Gardner, W., Dorling, R, Statistical Surface Ozone Models: An Improved Methodology to Account for Non-Linear Behavior, Atmospheric Environment, 34 (2000), 1, pp. 21-34
    • (2000) Atmospheric Environment , vol.34 , Issue.1 , pp. 21-34
    • Gardner, W.1    Dorling, R.2
  • 16
    • 4344591889 scopus 로고    scopus 로고
    • Neural Network Forecasting for Seasonal and Trend Time Series
    • Zang, P., Qi, M., Neural Network Forecasting for Seasonal and Trend Time Series, European Journal Research, 160 (2005), 2, pp. 501-514.
    • (2005) European Journal Research , vol.160 , Issue.2 , pp. 501-514
    • Zang, P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.