메뉴 건너뛰기




Volumn , Issue , 2012, Pages 101-102

Extreme learning machine for wireless indoor localization

Author keywords

ELM; Fingerprinting; Indoor localization; Neural network

Indexed keywords

ACCESS POINTS; ELM; EXTREME LEARNING MACHINE; FINGERPRINTING; INDOOR LOCALIZATION; LOW COSTS; OFF-LINE LEARNING; ON-LINE LOCALIZATION; RECEIVED SIGNAL STRENGTH; SINGLE LAYER; STORAGE SPACES; TERMINAL DEVICES;

EID: 84860525092     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2185677.2185697     Document Type: Conference Paper
Times cited : (11)

References (3)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1-3) (2006) 489-501. (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 3
    • 84860528849 scopus 로고
    • National Research Council (U.S.). Committee on the Future of the Global Positioning System and National Academy of Public Administration National Academies Press, Chapter 1
    • National Research Council (U.S.). Committee on the Future of the Global Positioning System and National Academy of Public Administration, "The global positioning system: a shared national asset", National Academies Press, Chapter 1, p. 17, 1995.
    • (1995) The Global Positioning System: A Shared National Asset , pp. 17


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.