메뉴 건너뛰기




Volumn 114, Issue , 2012, Pages 334-341

Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required

Author keywords

Bioanodes; Electrochemically active biofilm; Electron transfer; Microbial anodes; Microbial fuel cell (MFC)

Indexed keywords

BIOANODES; CARBON-CLOTH ELECTRODES; ELECTRON TRANSFER; ELECTRON TRANSPORT; EXTRACELLULAR; EXTRACELLULAR ELECTRON TRANSFER; HETEROGENEOUS STRUCTURES; LEACHATES; MICROBIAL FUEL CELL (MFC); OPEN CIRCUITS; REDOX SYSTEMS; UNIFORM STRUCTURE;

EID: 84860490996     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2012.03.042     Document Type: Article
Times cited : (29)

References (33)
  • 3
    • 41649111115 scopus 로고    scopus 로고
    • Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
    • Busalmen J.P., Esteve-Nuñez A., Feliu J.M. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environmental Science & Technology 2008, 42:2445-2450.
    • (2008) Environmental Science & Technology , vol.42 , pp. 2445-2450
    • Busalmen, J.P.1    Esteve-Nuñez, A.2    Feliu, J.M.3
  • 5
    • 79954592326 scopus 로고    scopus 로고
    • Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes
    • Cercado-Quezada B., Delia M.-L., Bergel A. Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochemistry Communications 2011, 13:440-443.
    • (2011) Electrochemistry Communications , vol.13 , pp. 440-443
    • Cercado-Quezada, B.1    Delia, M.-L.2    Bergel, A.3
  • 6
    • 73749085901 scopus 로고    scopus 로고
    • Testing various food-industry wastes for electricity production in microbial fuel cell
    • Cercado-Quezada B., Delia M.L., Bergel A. Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresource Technology 2010, 101:2748-2754.
    • (2010) Bioresource Technology , vol.101 , pp. 2748-2754
    • Cercado-Quezada, B.1    Delia, M.L.2    Bergel, A.3
  • 9
    • 33847607418 scopus 로고    scopus 로고
    • Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
    • Cheng S.A., Logan B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications 2007, 9:492-496.
    • (2007) Electrochemistry Communications , vol.9 , pp. 492-496
    • Cheng, S.A.1    Logan, B.E.2
  • 10
    • 53049107478 scopus 로고    scopus 로고
    • On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells
    • Fricke K., Harnisch F., Schroder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy & Environmental Science 2008, 1:144-147.
    • (2008) Energy & Environmental Science , vol.1 , pp. 144-147
    • Fricke, K.1    Harnisch, F.2    Schroder, U.3
  • 12
    • 80054838126 scopus 로고    scopus 로고
    • Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells
    • He G., Gu Y., He S., Schröder U., Chen S., Hou H. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells. Bioresource Technology 2011, 102:10763-10766.
    • (2011) Bioresource Technology , vol.102 , pp. 10763-10766
    • He, G.1    Gu, Y.2    He, S.3    Schröder, U.4    Chen, S.5    Hou, H.6
  • 13
    • 78651107055 scopus 로고    scopus 로고
    • Microbial fuel cells for energy self-sufficient domestic wastewater treatment - a review and discussion from energetic consideration
    • Lefebvre O., Uzabiaga A., Chang I., Kim B.-H., Ng H. Microbial fuel cells for energy self-sufficient domestic wastewater treatment - a review and discussion from energetic consideration. Applied Microbiology and Biotechnology 2011, 89:259-270.
    • (2011) Applied Microbiology and Biotechnology , vol.89 , pp. 259-270
    • Lefebvre, O.1    Uzabiaga, A.2    Chang, I.3    Kim, B.-H.4    Ng, H.5
  • 14
    • 32044469376 scopus 로고    scopus 로고
    • A review of methods for studying microbial diversity in soils
    • Liu B.-R., Jia G.-M., Chen J., Wang G. A review of methods for studying microbial diversity in soils. Pedosphere 2006, 16:18-24.
    • (2006) Pedosphere , vol.16 , pp. 18-24
    • Liu, B.-R.1    Jia, G.-M.2    Chen, J.3    Wang, G.4
  • 15
    • 77951620779 scopus 로고    scopus 로고
    • The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells
    • Liu Y., Harnisch F., Fricke K., Schroder U., Climent V., Feliu J.M. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors & Bioelectronics 2010, 25:2167-2171.
    • (2010) Biosensors & Bioelectronics , vol.25 , pp. 2167-2171
    • Liu, Y.1    Harnisch, F.2    Fricke, K.3    Schroder, U.4    Climent, V.5    Feliu, J.M.6
  • 16
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology 2010, 85:1665-1671.
    • (2010) Applied Microbiology and Biotechnology , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 17
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 2009, 7:375-381.
    • (2009) Nature Reviews Microbiology , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 19
    • 77951018320 scopus 로고    scopus 로고
    • Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential
    • Marsili E., Sun J., Bond D.R. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 2010, 22:865-874.
    • (2010) Electroanalysis , vol.22 , pp. 865-874
    • Marsili, E.1    Sun, J.2    Bond, D.R.3
  • 20
    • 37249025605 scopus 로고    scopus 로고
    • Looking for chinks in the armor of bacterial biofilms
    • Monroe D. Looking for chinks in the armor of bacterial biofilms. PLoS Biology 2007, 5:2458-2461.
    • (2007) PLoS Biology , vol.5 , pp. 2458-2461
    • Monroe, D.1
  • 21
    • 0022717274 scopus 로고
    • Surface-properties of electrochemically pretreated glassy-carbon
    • Nagaoka T., Yoshino T. Surface-properties of electrochemically pretreated glassy-carbon. Analytical Chemistry 1986, 58:1037-1042.
    • (1986) Analytical Chemistry , vol.58 , pp. 1037-1042
    • Nagaoka, T.1    Yoshino, T.2
  • 22
    • 41849128520 scopus 로고    scopus 로고
    • Forming electrochemically active biofilms from garden compost under chronoamperometry
    • Parot S., Delia M.L., Bergel A. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technology 2008, 99:4809-4816.
    • (2008) Bioresource Technology , vol.99 , pp. 4809-4816
    • Parot, S.1    Delia, M.L.2    Bergel, A.3
  • 23
    • 84855168843 scopus 로고    scopus 로고
    • Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability
    • Pocaznoi D., Erable B., Delia M.-L., Bergel A. Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability. Energy & Environmental Science 2012, 5:5287-5296.
    • (2012) Energy & Environmental Science , vol.5 , pp. 5287-5296
    • Pocaznoi, D.1    Erable, B.2    Delia, M.-L.3    Bergel, A.4
  • 24
    • 78650822553 scopus 로고    scopus 로고
    • Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes
    • Pons L., Delia M.L., Bergel A. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresource Technology 2011, 102:2678-2683.
    • (2011) Bioresource Technology , vol.102 , pp. 2678-2683
    • Pons, L.1    Delia, M.L.2    Bergel, A.3
  • 26
    • 77950547042 scopus 로고    scopus 로고
    • Initial development and structure of biofilms on microbial fuel cell anodes
    • Read S.T., Dutta P., Bond P.L., Keller J., Rabaey K. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiology 2010, 10.
    • (2010) BMC Microbiology , vol.10
    • Read, S.T.1    Dutta, P.2    Bond, P.L.3    Keller, J.4    Rabaey, K.5
  • 28
    • 67449106161 scopus 로고    scopus 로고
    • Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity
    • Schaetzle O., Barriere F., Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy & Environmental Science 2008, 1:607-620.
    • (2008) Energy & Environmental Science , vol.1 , pp. 607-620
    • Schaetzle, O.1    Barriere, F.2    Baronian, K.3
  • 29
    • 79952378343 scopus 로고    scopus 로고
    • Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400
    • Strycharz S.M., Malanoski A.P., Snider R.M., Yi H., Lovley D.R., Tender L.M. Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energy & Environmental Science 2011, 4:896-913.
    • (2011) Energy & Environmental Science , vol.4 , pp. 896-913
    • Strycharz, S.M.1    Malanoski, A.P.2    Snider, R.M.3    Yi, H.4    Lovley, D.R.5    Tender, L.M.6
  • 30
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 2008, 100:872-881.
    • (2008) Biotechnology and Bioengineering , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 32
    • 57149089226 scopus 로고    scopus 로고
    • Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential
    • Wang X., Feng Y.J., Ren N.Q., Wang H.M., Lee H., Li N., Zhao Q.L. Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochimica Acta 2009, 54:1109-1114.
    • (2009) Electrochimica Acta , vol.54 , pp. 1109-1114
    • Wang, X.1    Feng, Y.J.2    Ren, N.Q.3    Wang, H.M.4    Lee, H.5    Li, N.6    Zhao, Q.L.7
  • 33
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei J.C., Liang P., Huang X. Recent progress in electrodes for microbial fuel cells. Bioresource Technology 2011, 102:9335-9344.
    • (2011) Bioresource Technology , vol.102 , pp. 9335-9344
    • Wei, J.C.1    Liang, P.2    Huang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.