메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 241-245

Neural network based adaboosting approach for hyperspectral data classification

Author keywords

adaboost; aviris; Hyperspectral data classification; neural network; remote sensing

Indexed keywords

ADABOOST ALGORITHM; AVIRIS; BAYES CLASSIFIER; CONFIDENCE SCORE; DATA SETS; DIMENSION REDUCTION; ENTROPY GAIN; HIDDEN LAYERS; HYPERSPECTRAL; HYPERSPECTRAL DATA CLASSIFICATION; ITERATIVE APPROACH; LINEAR COMBINATIONS; ROBUST APPROACHES; TRAINING SAMPLE; WEAK CLASSIFIERS;

EID: 84860481518     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCSNT.2011.6181949     Document Type: Conference Paper
Times cited : (18)

References (17)
  • 1
    • 0027525734 scopus 로고
    • Artificial neural networks for landcover classification and mapping
    • D. L. Civco. Artificial neural networks for landcover classification and mapping. International Journal of Geophysical Information Systems, 7(2):173-186, 1993.
    • (1993) International Journal of Geophysical Information Systems , vol.7 , Issue.2 , pp. 173-186
    • Civco, D.L.1
  • 3
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 0030653311 scopus 로고    scopus 로고
    • Block-based maximum likelihood classification for hyperspectral remote sensing data
    • X. Jia. Block-based maximum likelihood classification for hyperspectral remote sensing data. in Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS98), 2:778-780, 1997.
    • (1997) Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS98) , vol.2 , pp. 778-780
    • Jia, X.1
  • 9
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • J. Li, J. M. Bioucas-Dias, and A. Plaza. Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. and Remote Sensing, pages 4085-4098, 2010.
    • (2010) IEEE Trans. Geosci. and Remote Sensing , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 10
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • DOI 10.1080/01431160600746456, PII 773345198
    • D. Lu and Q. Weng. A survey of image classification methods and techniques for improving classification performance. international journal of remote sensing. International Journal of Remote Sensing, 28(5):823-870, 2007. (Pubitemid 46476334)
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 13
    • 1242332729 scopus 로고    scopus 로고
    • Unsupervised classification of hyperspectral data: An ica mixture model based approach
    • C. A. Shah, M. K. Arora, and P. K. Varshney. Unsupervised classification of hyperspectral data: an ica mixture model based approach. International Journal of Remote Sensing, 25(2):481-487, 2004.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.2 , pp. 481-487
    • Shah, C.A.1    Arora, M.K.2    Varshney, P.K.3
  • 17
    • 1242330411 scopus 로고    scopus 로고
    • Unsupervised classification method for hyperspectral image combining pca and gaussian mixture model
    • H. Wu, Kuang, Gangyao, and W. Yu. Unsupervised classification method for hyperspectral image combining pca and gaussian mixture model. Journal of Computer and System Sciences, 5286:729-734, 2003.
    • (2003) Journal of Computer and System Sciences , vol.5286 , pp. 729-734
    • Wu, H.1    Kuang2    Gangyao3    Yu, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.