메뉴 건너뛰기




Volumn 218, Issue 18, 2012, Pages 9427-9437

Second type Hukuhara differentiable solutions to the delay set-valued differential equations

Author keywords

Existence and uniqueness of solution; Hukuhara difference; Second type Hukuhara derivative; Set differential equation; Set differential equation with delay; Set valued mapping

Indexed keywords

DIFFERENCE EQUATIONS;

EID: 84860460941     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.03.027     Document Type: Article
Times cited : (48)

References (31)
  • 1
    • 0012777172 scopus 로고
    • A calculus for set-valued maps and set-valued evolution equations
    • Z. Artstein, A calculus for set-valued maps and set-valued evolution equations, Set-Valued Anal. 3 (1995) 216-261.
    • (1995) Set-Valued Anal. , vol.3 , pp. 216-261
    • Artstein, Z.1
  • 2
    • 50549204934 scopus 로고
    • Integrals of set-valued functions
    • R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12.
    • (1965) J. Math. Anal. Appl. , vol.12 , pp. 1-12
    • Aumann, R.J.1
  • 3
    • 33746134082 scopus 로고    scopus 로고
    • Semifixed sets of maps in hyperspaces with application to set differential equations
    • DOI 10.1007/s11228-005-0011-3
    • F.S. de Blasi, Semifixed sets of maps in hyperspaces with application to set equations, Set-Valued Anal. 14 (3) (2006) 263-272. (Pubitemid 44086115)
    • (2006) Set-Valued Analysis , vol.14 , Issue.3 , pp. 263-272
    • De Blasi, F.S.1
  • 4
    • 34248587205 scopus 로고    scopus 로고
    • Banach-Saks-Mazur and Kakutani-Ky Fan theorems in spaces of multifunctions and applications to set differential inclusions
    • F.S. de Blasi, Banach-Saks-Mazur and Kakutani-Ky Fan theorems in spaces of multifunctions and applications to set differential inclusions, Dynam. Syst. Appl. 16 (1) (2007) 73-88.
    • (2007) Dynam. Syst. Appl. , vol.16 , Issue.1 , pp. 73-88
    • De Blasi, F.S.1
  • 5
    • 12844285437 scopus 로고
    • Equazioni differenziali con soluzioni a valore compatto convesso
    • F.S. de Blasi, F. Iervolino, Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital. 4 (2) (1969) 491-501.
    • (1969) Boll. Unione Mat. Ital. , vol.4 , Issue.2 , pp. 491-501
    • De Blasi, F.S.1    Iervolino, F.2
  • 6
    • 34248596883 scopus 로고
    • Uniqueness and existence theorems for differential equations with convex valued solutions
    • A.I. Brandão Lopes Pinto, F.S. de Blasi, F. Iervolino, Uniqueness and existence theorems for differential equations with convex valued solutions, Boll. Unione Mat. Ital. 4 (3) (1970) 1-12.
    • (1970) Boll. Unione Mat. Ital. , vol.4 , Issue.3 , pp. 1-12
    • Brandão Lopes Pinto, A.I.1    De Blasi, F.S.2    Iervolino, F.3
  • 7
    • 60349110519 scopus 로고    scopus 로고
    • Stability results for set differential equations with causal maps
    • Z. Drici, F.A. McRae, J. Vasundhara Devi, Stability results for set differential equations with causal maps, Dynam. Syst. Appl. 15 (2006) 451-463.
    • (2006) Dynam. Syst. Appl. , vol.15 , pp. 451-463
    • Drici, Z.1    McRae, F.A.2    Vasundhara Devi, J.3
  • 8
    • 14644437111 scopus 로고    scopus 로고
    • Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations
    • DOI 10.1016/j.na.2005.01.004, PII S0362546X05000155
    • G.N. Galanis, T. Gnana Bhaskar, V. Lakshmikantham, P.K. Palamides, Set valued functions in Frechet spaces: continuity Hukuhara differentiability and applications to set differential equations, Nonlinear Anal. TMA 61 (2005) 559-575. (Pubitemid 40319646)
    • (2005) Nonlinear Analysis, Theory, Methods and Applications , vol.61 , Issue.4 , pp. 559-575
    • Galanis, G.N.1    Bhaskar, T.G.2    Lakshmikantham, V.3    Palamides, P.K.4
  • 9
    • 0042412264 scopus 로고    scopus 로고
    • Set differential equations and flow invariance
    • DOI 10.1080/0003681031000101529
    • T. Gnana Bhaskar, V. Lakshmikantham, Set differential equations and flow invariance, Appl. Anal. 82 (2003) 357-368. (Pubitemid 36571468)
    • (2003) Applicable Analysis , vol.82 , Issue.4 , pp. 357-368
    • Bhaskar, T.G.1    Lakshmikantham, V.2
  • 10
    • 28044468648 scopus 로고    scopus 로고
    • Nonlinear variation of parameters formula for set differential equations in a metric space
    • DOI 10.1016/j.na.2005.02.036, PII S0362546X05001926
    • T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi, Nonlinear variation of parameters formula for set differential equations in a metric space, Nonlinear Anal. TMA 63 (2005) 735-744. (Pubitemid 41691130)
    • (2005) Nonlinear Analysis, Theory, Methods and Applications , vol.63 , Issue.5-7 , pp. 735-744
    • Bhaskar, T.G.1    Lakshmikantham, V.2    Devi, J.V.3
  • 13
    • 0012777173 scopus 로고
    • Intégration des applications mesurables dont la valeur est un compact convex
    • M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convex, Funkcial. Ekvac. 10 (1967) 205-229.
    • (1967) Funkcial. Ekvac. , vol.10 , pp. 205-229
    • Hukuhara, M.1
  • 15
    • 33746179158 scopus 로고
    • Description of a class of differential equations with set-valued solutions
    • M. Kisielewicz, Description of a class of differential equations with set-valued solutions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (8) (1975) 158-162.
    • (1975) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. , vol.58 , Issue.8 , pp. 158-162
    • Kisielewicz, M.1
  • 16
    • 12744250114 scopus 로고
    • Method of averaging for differential equations with compact convex valued
    • M. Kisielewicz, Method of averaging for differential equations with compact convex valued solutions, Rend. Mat. 9 (6) (1976) 397-408.
    • (1976) Solutions Rend. Mat. , vol.9 , Issue.6 , pp. 397-408
    • Kisielewicz, M.1
  • 17
    • 34248587149 scopus 로고
    • Existence theorem for functional differential equations with compact convex valued solutions
    • M. Kisielewicz, B. Serafin, W. Sosulski, Existence theorem for functional differential equations with compact convex valued solutions, Demon. Math. 9 (1976) 229-237.
    • (1976) Demon. Math. , vol.9 , pp. 229-237
    • Kisielewicz, M.1    Serafin, B.2    Sosulski, W.3
  • 18
    • 15544370865 scopus 로고    scopus 로고
    • Set differential equations versus fuzzy differential equations
    • V. Lakshmikantham, Set differential equations versus fuzzy differential equations, Appl. Math. Comput. 164 (2005) 277-294.
    • (2005) Appl. Math. Comput. , vol.164 , pp. 277-294
    • Lakshmikantham, V.1
  • 22
    • 79961173984 scopus 로고    scopus 로고
    • Interval differential equations with a second type Hukuhara derivative
    • M.T. Malinowski, Interval differential equations with a second type Hukuhara derivative, Appl. Math. Lett. 24 (2011) 2118-2123.
    • (2011) Appl. Math. Lett. , vol.24 , pp. 2118-2123
    • Malinowski, M.T.1
  • 23
    • 33749061013 scopus 로고    scopus 로고
    • Devi Impulsive set differential equations with delay
    • F.A. McRae, J. Vasundhara Devi, Impulsive set differential equations with delay, Appl. Anal. 84 (2005) 329-341.
    • (2005) Appl. Anal. , vol.84 , pp. 329-341
    • McRae, F.A.1    Vasundhara, J.2
  • 24
    • 34247326102 scopus 로고    scopus 로고
    • Some results on sheaf-solutions of sheaf set control problems
    • DOI 10.1016/j.na.2006.07.018, PII S0362546X06004238
    • N.D. Phu, T.T. Tung, Some results on sheaf-solutions of sheaf set control problems, Nonlinear Anal. TMA 67 (2007) 1309-1315. (Pubitemid 46634802)
    • (2007) Nonlinear Analysis, Theory, Methods and Applications , vol.67 , Issue.5 , pp. 1309-1315
    • Phu, N.D.1    Tung, T.T.2
  • 25
    • 53949118548 scopus 로고    scopus 로고
    • Stability criteria for set control differential equations
    • N.D. Phu, L.T. Quang, T.T. Tung, Stability criteria for set control differential equations, Nonlinear Anal. TMA 69 (2008) 3715-3721.
    • (2008) Nonlinear Anal. TMA , vol.69 , pp. 3715-3721
    • Phu, N.D.1    Quang, L.T.2    Tung, T.T.3
  • 26
    • 25144468599 scopus 로고    scopus 로고
    • Averaging in differential equations with Hukuhara derivative and delay
    • A.V. Plotnikov, P.I. Rashkov, Averaging in differential equations with Hukuhara derivative and delay, Funct. Differ. Equ. 8 (2001) 371-381.
    • (2001) Funct. Differ. Equ. , vol.8 , pp. 371-381
    • Plotnikov, A.V.1    Rashkov, P.I.2
  • 27
    • 67349163185 scopus 로고    scopus 로고
    • Generalized Hukuhara differentiability of interval-valued functions and interval differential equations
    • L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal. 71 (2009) 1311-1328.
    • (2009) Nonlinear Anal. , vol.71 , pp. 1311-1328
    • Stefanini, L.1    Bede, B.2
  • 28
    • 84860466198 scopus 로고    scopus 로고
    • A fixed point approach to functional-integral set equations
    • I.-C. Tişe, A fixed point approach to functional-integral set equations, Demon. Math. 43 (2010) 815-826.
    • (2010) Demon. Math. , vol.43 , pp. 815-826
    • Tişe, I.-C.1
  • 29
    • 67349278129 scopus 로고    scopus 로고
    • Stability of set differential equations and applications
    • N.N. Tu, T.T. Tung, Stability of set differential equations and applications, Nonlinear Anal. TMA 71 (2009) 1526-1533.
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 1526-1533
    • Tu, N.N.1    Tung, T.T.2
  • 30
    • 79957816618 scopus 로고    scopus 로고
    • Existence uniqueness of solutions for set differential equations involving causal operators with memory
    • J. Vasundhara Devi, Existence uniqueness of solutions for set differential equations involving causal operators with memory, Eur. J. Pure Appl. Math. 3 (2010) 737-747.
    • (2010) Eur. J. Pure Appl. Math. , vol.3 , pp. 737-747
    • Vasundhara Devi, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.