-
1
-
-
77950203311
-
Fractal dimensions of the Q-state Potts model for the complete and external hulls
-
arXiv: 1001. 0055v1 [cond-mat. stat-mech]
-
Adams, D. A., Sander, L. M., Ziff, R. M.: Fractal dimensions of the Q-state Potts model for the complete and external hulls. J. Stat. Mech. P03004 (2010). arXiv: 1001. 0055v1 [cond-mat. stat-mech].
-
(2010)
J. Stat. Mech.
-
-
Adams, D.A.1
Sander, L.M.2
Ziff, R.M.3
-
2
-
-
0037316511
-
Fractal dimensions and corrections to scaling for critical Potts clusters
-
arXiv:cond-mat/0206367
-
Aharony, A., Asikainen, J.: Fractal dimensions and corrections to scaling for critical Potts clusters. Fractals 11, 3-7 (2003). arXiv: cond-mat/0206367.
-
(2003)
Fractals
, vol.11
, pp. 3-7
-
-
Aharony, A.1
Asikainen, J.2
-
3
-
-
0141561957
-
Homology of Fortuin-Kasteleyn clusters of Potts models on the torus
-
arXiv:hep-th/0111193
-
Arguin, L.-P.: Homology of Fortuin-Kasteleyn clusters of Potts models on the torus. J. Stat. Phys. 109, 301-310 (2002). arXiv: hep-th/0111193.
-
(2002)
J. Stat. Phys.
, vol.109
, pp. 301-310
-
-
Arguin, L.-P.1
-
4
-
-
7244224974
-
Fractal geometry of critical Potts clusters
-
arXiv:cond-mat/0212216
-
Asikainen, J., Aharony, A., Mandelbrot, B. B., Rauch, E. M., Hovi, J. P.: Fractal geometry of critical Potts clusters. Eur. Phys. J. B 34, 479-487 (2003). arXiv: cond-mat/0212216.
-
(2003)
Eur. Phys. J. B
, vol.34
, pp. 479-487
-
-
Asikainen, J.1
Aharony, A.2
Mandelbrot, B.B.3
Rauch, E.M.4
Hovi, J.P.5
-
5
-
-
0000663210
-
Exact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice
-
arXiv:cond-mat/9408083v1
-
Batchelor, M. T., Suzuki, J., Yung, C. M.: Exact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice. Phys. Rev. Lett. 73, 2646-2649 (1994). arXiv: cond-mat/9408083v1.
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2646-2649
-
-
Batchelor, M.T.1
Suzuki, J.2
Yung, C.M.3
-
6
-
-
52049084572
-
The dimension of the SLE curves
-
arXiv:math/0211322v3 [math.PR]
-
Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421-1452 (2008). arXiv: math/0211322v3 [math. PR].
-
(2008)
Ann. Probab.
, vol.36
, Issue.4
, pp. 1421-1452
-
-
Beffara, V.1
-
7
-
-
0040239364
-
Critical behaviour and conformal anomaly of the O(n) model on the square lattice
-
Blöte, H. W. J., Nienhuis, B.: Critical behaviour and conformal anomaly of the O(n) model on the square lattice. J. Phys. A, Math. Gen. 22, 1415-1438 (1989).
-
(1989)
J. Phys. A, Math. Gen.
, vol.22
, pp. 1415-1438
-
-
Blöte, H.W.J.1
Nienhuis, B.2
-
8
-
-
2342578042
-
Geometrical aspects of critical Ising configurations in two dimensions
-
Blöte, H. W. J., Knops, Y. M. M., Nienhuis, B.: Geometrical aspects of critical Ising configurations in two dimensions. Phys. Rev. Lett. 68, 3440-3443 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 3440-3443
-
-
Blöte, H.W.J.1
Knops, Y.M.M.2
Nienhuis, B.3
-
9
-
-
33749356449
-
Two-dimensional critical percolation: the full scaling limit
-
arXiv:math/0605035v1 [math.PR]
-
Camia, F., Newman, C. M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268, 1-38 (2006). arXiv: math/0605035v1 [math. PR].
-
(2006)
Commun. Math. Phys.
, vol.268
, pp. 1-38
-
-
Camia, F.1
Newman, C.M.2
-
10
-
-
0032097196
-
Graphical representations and cluster algorithms II
-
Chayes, L., Machta, J.: Graphical representations and cluster algorithms II. Physica A 254, 477-516 (1998).
-
(1998)
Physica A
, vol.254
, pp. 477-516
-
-
Chayes, L.1
Machta, J.2
-
11
-
-
0001285996
-
Fractal structure of Ising and Potts clusters: exact results
-
Coniglio, A.: Fractal structure of Ising and Potts clusters: exact results. Phys. Rev. Lett. 62, 3054-3057 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 3054-3057
-
-
Coniglio, A.1
-
12
-
-
42749107610
-
Geometric properties of two-dimensional critical and tricritical Potts models
-
Deng, Y., Blöte, H. W. J., Nienhuis, B.: Geometric properties of two-dimensional critical and tricritical Potts models. Phys. Rev. E 69, 026123 (2004).
-
(2004)
Phys. Rev. E
, vol.69
, pp. 026123
-
-
Deng, Y.1
Blöte, H.W.J.2
Nienhuis, B.3
-
13
-
-
33947502902
-
Cluster simulations of loop models on two-dimensional lattices
-
120601arXiv:cond-mat/0608447v3 [cond-mat.stat-mech]
-
Deng, Y., Garoni, T. M., Guo, W., Blöte, H. W. J., Sokal, A. D.: Cluster simulations of loop models on two-dimensional lattices. Phys. Rev. Lett. 98, 120601 (2007). arXiv: cond-mat/0608447v3 [cond-mat. stat-mech].
-
(2007)
Phys. Rev. Lett.
, vol.98
-
-
Deng, Y.1
Garoni, T.M.2
Guo, W.3
Blöte, H.W.J.4
Sokal, A.D.5
-
14
-
-
67650157167
-
Geometric properties of two-dimensional O(n) loop configurations
-
arXiv:cond-mat/0608547v1 [cond-mat.stat.mech]
-
Ding, C., Deng, Y., Guo, W., Qian, X., Blöte, H. W. J.: Geometric properties of two-dimensional O(n) loop configurations. J. Phys. A, Math. Theor. 40, 3305-3317 (2007). arXiv: cond-mat/0608547v1 [cond-mat. stat. mech].
-
(2007)
J. Phys. A, Math. Theor.
, vol.40
, pp. 3305-3317
-
-
Ding, C.1
Deng, Y.2
Guo, W.3
Qian, X.4
Blöte, H.W.J.5
-
16
-
-
71849096540
-
Conformal boundary conditions in the critical O(n) model and dilute loop models
-
arXiv:0905.1382v1
-
Dubail, J., Jacobsen, J. L., Saleur, H.: Conformal boundary conditions in the critical O(n) model and dilute loop models. Nucl. Phys. B 827, 457-502 (2010). arXiv: 0905. 1382v1.
-
(2010)
Nucl. Phys. B
, vol.827
, pp. 457-502
-
-
Dubail, J.1
Jacobsen, J.L.2
Saleur, H.3
-
18
-
-
0001206927
-
Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts and O(n) models
-
Duplantier, B.: Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts and O(n) models. J. Stat. Phys. 49, 411-431 (1987).
-
(1987)
J. Stat. Phys.
, vol.49
, pp. 411-431
-
-
Duplantier, B.1
-
19
-
-
0345973045
-
Two-dimensional fractal geometry, critical phenomena and conformal invariance
-
Duplantier, B.: Two-dimensional fractal geometry, critical phenomena and conformal invariance. Phys. Rep. 184(2-4), 229-257 (1989).
-
(1989)
Phys. Rep.
, vol.184
, Issue.2-4
, pp. 229-257
-
-
Duplantier, B.1
-
20
-
-
24244442492
-
Conformally invariant fractals and potential theory
-
Duplantier, B.: Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84(7), 1363-1367 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, Issue.7
, pp. 1363-1367
-
-
Duplantier, B.1
-
22
-
-
0000578291
-
Structure and perimeters of percolation clusters
-
Grossman, T., Aharony, A.: Structure and perimeters of percolation clusters. J. Phys. A, Math. Gen. 19, L745-L751 (1986).
-
(1986)
J. Phys. A, Math. Gen.
, vol.19
-
-
Grossman, T.1
Aharony, A.2
-
23
-
-
67650908897
-
Discretely holomorphic parafermions and integrable loop models
-
arXiv: 0810. 5037v2 [math-ph]
-
Ikhlef, Y., Cardy, J.: Discretely holomorphic parafermions and integrable loop models. J. Phys. A 102001 (2009). arXiv: 0810. 5037v2 [math-ph].
-
(2009)
J. Phys. A
, pp. 102001
-
-
Ikhlef, Y.1
Cardy, J.2
-
24
-
-
3543011408
-
A guide to stochastic Loewner evolution and its applications
-
arXiv:math-ph/0312056v3
-
Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 115, 1149-1229 (2004). arXiv: math-ph/0312056v3.
-
(2004)
J. Stat. Phys.
, vol.115
, pp. 1149-1229
-
-
Kager, W.1
Nienhuis, B.2
-
25
-
-
0034345586
-
Conformal invariance of domino tiling
-
arXiv:math-ph/9910002v1
-
Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759-795 (2000). arXiv: math-ph/9910002v1.
-
(2000)
Ann. Probab.
, vol.28
, pp. 759-795
-
-
Kenyon, R.1
-
26
-
-
0034341450
-
Universality and conformal invariance for the Ising model in domains with boundary
-
Langlands, R., Lewis, M.-A., Saint-Aubin, Y.: Universality and conformal invariance for the Ising model in domains with boundary. J. Stat. Phys. 98, 131-244 (2000).
-
(2000)
J. Stat. Phys.
, vol.98
, pp. 131-244
-
-
Langlands, R.1
Lewis, M.-A.2
Saint-Aubin, Y.3
-
27
-
-
79952703682
-
Worm Monte Carlo study of the honeycomb-lattice loop model
-
arXiv:1011.1980v2 [cond-mat.stat-mech]
-
Liu, Q., Deng, Y., Garoni, T. M.: Worm Monte Carlo study of the honeycomb-lattice loop model. Nucl. Phys. B 846, 283-315 (2011). arXiv: 1011. 1980v2 [cond-mat. stat-mech].
-
(2011)
Nucl. Phys. B
, vol.846
, pp. 283-315
-
-
Liu, Q.1
Deng, Y.2
Garoni, T.M.3
-
28
-
-
45149136697
-
Negative fractal dimensions and multifractals
-
Mandelbrot, B. B.: Negative fractal dimensions and multifractals. Physica A 163, 306-315 (1990).
-
(1990)
Physica A
, vol.163
, pp. 306-315
-
-
Mandelbrot, B.B.1
-
29
-
-
0001371369
-
Critical and multicritical O(n) models
-
Nienhuis, B.: Critical and multicritical O(n) models. Physica A 163, 152-157 (1990).
-
(1990)
Physica A
, vol.163
, pp. 152-157
-
-
Nienhuis, B.1
-
31
-
-
0010028333
-
Critical percolation on the torus
-
Pinson, T. H.: Critical percolation on the torus. J. Stat. Phys. 75, 1167-1177 (1994).
-
(1994)
J. Stat. Phys.
, vol.75
, pp. 1167-1177
-
-
Pinson, T.H.1
-
32
-
-
23844467552
-
Basic properties of SLE
-
arXiv:math/0106036v4 [math.PR]
-
Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 883-924 (2005). arXiv: math/0106036v4 [math. PR].
-
(2005)
Ann. Math.
, vol.161
, pp. 883-924
-
-
Rohde, S.1
Schramm, O.2
-
33
-
-
65449149781
-
Geometric exponents, SLE and logarithmic minimal models
-
arXiv: 0809. 4806v2
-
Saint-Aubin, Y., Pearce, P. A., Rasmussen, J.: Geometric exponents, SLE and logarithmic minimal models. J. Stat. Mech. P02028 (2009). arXiv: 0809. 4806v2.
-
(2009)
J. Stat. Mech.
-
-
Saint-Aubin, Y.1
Pearce, P.A.2
Rasmussen, J.3
-
34
-
-
0001193785
-
Exact determination of the percolation hull exponent in two dimensions
-
Saleur, H., Duplantier, B.: Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett. 58, 2325-2328 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2325-2328
-
-
Saleur, H.1
Duplantier, B.2
-
35
-
-
70449679135
-
Exploration trees and conformal loop ensembles
-
arXiv:math/0609167v2 [math.PR]
-
Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79-129 (2006). arXiv: math/0609167v2 [math. PR].
-
(2006)
Duke Math. J.
, vol.147
, Issue.1
, pp. 79-129
-
-
Sheffield, S.1
-
36
-
-
0041869040
-
Critical percolation in the plane: conformal invariance. Cardy's formula, scaling limits
-
Smirnov, S.: Critical percolation in the plane: conformal invariance. Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239-244 (2001).
-
(2001)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.333
, pp. 239-244
-
-
Smirnov, S.1
-
37
-
-
77957693837
-
Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model
-
arXiv:0708.0039v1 [math-ph]
-
Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435-1467 (2010). arXiv: 0708. 0039v1 [math-ph].
-
(2010)
Ann. Math.
, vol.172
, pp. 1435-1467
-
-
Smirnov, S.1
-
38
-
-
30544439717
-
Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point exponents
-
Stanley, H. E.: Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point exponents. J. Phys. A, Math. Gen. 10, L211-L220 (1977).
-
(1977)
J. Phys. A, Math. Gen.
, vol.10
-
-
Stanley, H.E.1
-
39
-
-
33747349191
-
Nonuniversal critical dynamics in Monte Carlo simulations
-
Swendsen, R. H., Wang, J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58(2), 86-88 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, Issue.2
, pp. 86-88
-
-
Swendsen, R.H.1
Wang, J.-S.2
-
40
-
-
0002032987
-
Fractal dimensions of Potts clusters
-
Vanderzande, C.: Fractal dimensions of Potts clusters. J. Phys. A, Math. Gen. 25, L75-L80 (1992).
-
(1992)
J. Phys. A, Math. Gen.
, vol.25
-
-
Vanderzande, C.1
-
41
-
-
47749118683
-
The conformally invariant measure on self-avoiding loops
-
arXiv:math/0511605v3 [math.PR]
-
Werner, W.: The conformally invariant measure on self-avoiding loops. J. Am. Math. Soc. 21, 137-169 (2008). arXiv: math/0511605v3 [math. PR].
-
(2008)
J. Am. Math. Soc.
, vol.21
, pp. 137-169
-
-
Werner, W.1
|