메뉴 건너뛰기




Volumn , Issue , 2012, Pages 78-93

Integration of biological H2 producing processes

Author keywords

Alternative energy from organic wastes; Biohydrogen; Biological hydrogen production; Integration of biohydrogen processes; Integration of dark fermentation and microbial fuel cell; Integration of dark fermentation and photofermentation; Organic wastes decomposition

Indexed keywords


EID: 84860377937     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.2174/978160805224011201010078     Document Type: Chapter
Times cited : (7)

References (61)
  • 1
    • 33646071873 scopus 로고    scopus 로고
    • Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge
    • Wu S-Y, Hung C-H, Lin C-N, et al. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 2006; 93(5): 934-46.
    • Biotechnol Bioeng , vol.93 , Issue.5 , pp. 934-946
    • Wu, S-Y.1    Hung, C-H.2    Lin, C-N.3
  • 2
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: prospects and limitations to practical application
    • Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 2004; 29(2): 173-85.
    • Int J Hydrogen Energy , vol.29 , Issue.2 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 3
    • 3242660969 scopus 로고    scopus 로고
    • Re: Biohydrogen production: prospects and limitations to practical application - erratum
    • Levin DB. Re: Biohydrogen production: prospects and limitations to practical application - erratum. Int J Hydrogen Energy 2004; 29(13): 1425-6.
    • Int J Hydrogen Energy , vol.29 , Issue.13 , pp. 1425-1426
    • Levin, D.B.1
  • 4
    • 77949290834 scopus 로고    scopus 로고
    • A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass
    • Choi D, Chipman DC, Bents SC, Brown RC. A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 2010; 1032-46.
    • (2010) Appl Biochem Biotechnol , pp. 1032-1046
    • Choi, D.1    Chipman, D.C.2    Bents, S.C.3    Brown, R.C.4
  • 5
    • 33744473354 scopus 로고    scopus 로고
    • Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization
    • Sipma J, Henstra AM, Parshina SN, et al. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 2006; 26(1): 41-65.
    • Crit Rev Biotechnol , vol.26 , Issue.1 , pp. 41-65
    • Sipma, J.1    Henstra, A.M.2    Parshina, S.N.3
  • 6
    • 1542286924 scopus 로고    scopus 로고
    • Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC6803 deficient in the type I NADH-dehydrogenase complex
    • Cournac L, Guedeney G, Peltier G, et al. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC6803 deficient in the type I NADH-dehydrogenase complex. J Bacteriol 2004; 186(6): 1737-46.
    • J Bacteriol , vol.186 , Issue.6 , pp. 1737-1746
    • Cournac, L.1    Guedeney, G.2    Peltier, G.3
  • 7
    • 2142712975 scopus 로고    scopus 로고
    • Cyanobacterial-type, heteropentameric, NAD(+)-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina
    • Rakhely G, Kovacs AT, Maroti G, et al. Cyanobacterial-type, heteropentameric, NAD(+)-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 2004; 70(2): 722-8.
    • Appl Environ Microbiol , vol.70 , Issue.2 , pp. 722-728
    • Rakhely, G.1    Kovacs, A.T.2    Maroti, G.3
  • 8
    • 34249901035 scopus 로고    scopus 로고
    • The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina
    • Rakhely G, Laurinavichene TV, Tsygankov AA, et al. The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina. BBA-Bioenergetics 2007; 1767(6): 671-6.
    • BBA-Bioenergetics , vol.1767 , Issue.6 , pp. 671-676
    • Rakhely, G.1    Laurinavichene, T.V.2    Tsygankov, A.A.3
  • 9
    • 0026658899 scopus 로고    scopus 로고
    • Change in the H2 photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacterium
    • Suda S, Kumazawa S, Mitsui A. Change in the H2 photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacterium, Synechococcus sp miami bg 043511. Arch Microbiol 1992; 158(1): 1-4.
    • Synechococcus sp miami bg 043511. Arch Microbiol , vol.158 , Issue.1 , pp. 1-4
    • Suda, S.1    Kumazawa, S.2    Mitsui, A.3
  • 11
    • 84941787599 scopus 로고    scopus 로고
    • Fermentative and photochemical production of hydrogen in algae
    • Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 1942; 26: 219-40.
    • J Gen Physiol , vol.26 , pp. 219-240
    • Gaffron, H.1    Rubin, J.2
  • 12
    • 33746877306 scopus 로고    scopus 로고
    • Efficiency of hydrogen photoproduction in algae and cyanobacteria
    • Boichenko VA, Satina LY, Litvin FF. Efficiency of hydrogen photoproduction in algae and cyanobacteria. Fiziol Rast (USSR) 1989; 36: 239-47.
    • Fiziol Rast (USSR) , vol.36 , pp. 239-247
    • Boichenko, V.A.1    Satina, L.Y.2    Litvin, F.F.3
  • 13
    • 0033759410 scopus 로고    scopus 로고
    • Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii
    • Melis A, Zhang LP, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 2000; 122(1): 127-35.
    • Plant Physiol , vol.122 , Issue.1 , pp. 127-135
    • Melis, A.1    Zhang, L.P.2    Forestier, M.3
  • 14
    • 84863540127 scopus 로고
    • Hydrogenase mediated hydrogen metabolism in some cyanobacteria
    • Asada Y, Miyake M, Tomizuka N. Hydrogenase mediated hydrogen metabolism in some cyanobacteria. Photosynth Res 1992; 34(1): 128.
    • (1992) Photosynth Res , vol.34 , Issue.1 , pp. 128
    • Asada, Y.1    Miyake, M.2    Tomizuka, N.3
  • 15
    • 0036836356 scopus 로고    scopus 로고
    • Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation
    • Troshina O, Serebryakova L, Sheremetieva M, et al. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 2002; 27(11-12): 1283-9.
    • (2002) Int J Hydrogen Energy , vol.27 , Issue.11-12 , pp. 1283-1289
    • Troshina, O.1    Serebryakova, L.2    Sheremetieva, M.3
  • 16
    • 0001360267 scopus 로고    scopus 로고
    • Isolation and characterization of a unicellular green alga exhibiting high activity in dark hydrogen production
    • Miura Y, Ohta S, Mano M, et al. Isolation and characterization of a unicellular green alga exhibiting high activity in dark hydrogen production. Agric Biol Chem 1986; 50(11): 2837-44.
    • Agric Biol Chem , vol.50 , Issue.11 , pp. 2837-2844
    • Miura, Y.1    Ohta, S.2    Mano, M.3
  • 17
    • 70349764156 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 2005; 30: 785-93.
    • Environ Sci Technol , vol.30 , pp. 785-793
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 18
    • 64749098287 scopus 로고    scopus 로고
    • Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy
    • Redwood MD, Paterson-Beedle M, Macaskie LE. Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 2009; 8(2): 140-85.
    • Rev Environ Sci Biotechnol , vol.8 , Issue.2 , pp. 140-185
    • Redwood, M.D.1    Paterson-beedle, M.2    Macaskie, L.E.3
  • 19
    • 70349771942 scopus 로고    scopus 로고
    • Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges
    • Ren NQ, Wang AJ, Cao GL, et al. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol Adv 2009; 27(6): 1051-60.
    • Biotechnol Adv , vol.27 , Issue.6 , pp. 1051-1060
    • Ren, N.Q.1    Wang, A.J.2    Cao, G.L.3
  • 20
    • 33746884626 scopus 로고    scopus 로고
    • A two-stage, two-organism process for biohydrogen from glucose
    • Redwood MD, Macaskie LE. A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energy 2006; 31(11): 1514-21.
    • Int J Hydrogen Energy , vol.31 , Issue.11 , pp. 1514-1521
    • Redwood, M.D.1    Macaskie, L.E.2
  • 21
    • 68349148134 scopus 로고    scopus 로고
    • Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent
    • Uyar B, Schumacher M, Gebicki J, et al. Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent. Bioprocess Biosyst Eng 2009; 32(5): 603-6.
    • Bioprocess Biosyst Eng , vol.32 , Issue.5 , pp. 603-606
    • Uyar, B.1    Schumacher, M.2    Gebicki, J.3
  • 22
    • 77955564174 scopus 로고    scopus 로고
    • Towards the integration of dark- and photofermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production
    • Laurinavichene T, Belokopytov BF, Laurinavichius KS, et al. Towards the integration of dark- and photofermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int J Hydrogen Energy 2010: 35(16); 8536-43.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.16 , pp. 8536-8543
    • Laurinavichene, T.1    Belokopytov, B.F.2    Laurinavichius, K.S.3
  • 23
    • 0020582229 scopus 로고    scopus 로고
    • Photoproduction of H2 from cellulose by an anaerobic bacterial culture
    • Odom JM, Wall J. Photoproduction of H2 from cellulose by an anaerobic bacterial culture. Appl Environ Microbiol 1983; 45(4): 1300-5.
    • Appl Environ Microbiol , vol.45 , Issue.4 , pp. 1300-1305
    • Odom, J.M.1    Wall, J.2
  • 24
    • 0001651105 scopus 로고    scopus 로고
    • Hydrogen photoproduction from glucose by a co-culture of a photosynthetic bacteria and Clostridium butyricum
    • Miyake J, Mao X-Y, Kawamura S. Hydrogen photoproduction from glucose by a co-culture of a photosynthetic bacteria and Clostridium butyricum. J Ferment Technol 1984; 62(6): 531-535.
    • J Ferment Technol , vol.62 , Issue.6 , pp. 531-535
    • Miyake, J.1    Mao, X-Y.2    Kawamura, S.3
  • 25
    • 0031688575 scopus 로고    scopus 로고
    • H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19
    • Yokoi H, Mori S, Hirose J, et al. H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 1998; 20(9): 895-9.
    • Biotechnol Lett , vol.20 , Issue.9 , pp. 895-899
    • Yokoi, H.1    Mori, S.2    Hirose, J.3
  • 26
    • 0035109906 scopus 로고    scopus 로고
    • Microbial hydrogen production from sweet potato starch residue
    • Yokoi H, Saitsu A, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 2001; 91(1): 58-63.
    • J Biosci Bioeng , vol.91 , Issue.1 , pp. 58-63
    • Yokoi, H.1    Saitsu, A.2    Uchida, H.3
  • 27
    • 33746871412 scopus 로고    scopus 로고
    • Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV
    • Asada Y, Tokumoto M, Aihara Y, et al. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy 2006; 31(11): 1509-13.
    • Int J Hydrogen Energy , vol.31 , Issue.11 , pp. 1509-1513
    • Asada, Y.1    Tokumoto, M.2    Aihara, Y.3
  • 28
    • 51349112793 scopus 로고    scopus 로고
    • Biohydrogen production using sequental two-stage dark and photo fermentation processes
    • Chen CY, Yang MH, Yeh KL, et al. Biohydrogen production using sequental two-stage dark and photo fermentation processes. Int J Hydrogen Energy 2008; 33(21): 4755-62.
    • Int J Hydrogen Energy , vol.33 , Issue.21 , pp. 4755-4762
    • Chen, C.Y.1    Yang, M.H.2    Yeh, K.L.3
  • 29
    • 61749096340 scopus 로고    scopus 로고
    • Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49
    • Liu BF, Ren NQ, Xing DF, et al. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresource Technol 2009; 100(10): 2719-23.
    • Bioresource Technol , vol.100 , Issue.10 , pp. 2719-2723
    • Liu, B.F.1    Ren, N.Q.2    Xing, D.F.3
  • 30
    • 71549121084 scopus 로고    scopus 로고
    • Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency
    • Su HB, Cheng J, Zhou JH, et al. Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrogen Energy 2009; 34(21): 8846-53.
    • Int J Hydrogen Energy , vol.34 , Issue.21 , pp. 8846-8853
    • Su, H.B.1    Cheng, J.2    Zhou, J.H.3
  • 31
    • 77950339475 scopus 로고    scopus 로고
    • Enhanced bio-hydrogen production by the combination of dark- and photofermentation in batch culture
    • Liu BF, Ren NQ, Xie GJ, et al. Enhanced bio-hydrogen production by the combination of dark- and photofermentation in batch culture. Bioresource Technol 2010; 101(14): 5325-9.
    • Bioresource Technol , vol.101 , Issue.14 , pp. 5325-5329
    • Liu, B.F.1    Ren, N.Q.2    Xie, G.J.3
  • 32
    • 74049125666 scopus 로고    scopus 로고
    • Biohydrogen production from beet molasses by sequential dark and photofermentation
    • Ozgur E, Mars AE, Peksel B, et al. Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energy 2010; 35(2): 511-7.
    • Int J Hydrogen Energy , vol.35 , Issue.2 , pp. 511-517
    • Ozgur, E.1    Mars, A.E.2    Peksel, B.3
  • 33
    • 75349113167 scopus 로고    scopus 로고
    • Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-5
    • Xie GJ, Feng LB, Ren NQ, et al. Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-5. Int J Hydrogen Energy 2010; 35(5): 1929-35.
    • Int J Hydrogen Energy , vol.35 , Issue.5 , pp. 1929-1935
    • Xie, G.J.1    Feng, L.B.2    Ren, N.Q.3
  • 34
    • 33846228744 scopus 로고    scopus 로고
    • High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose
    • Tao Y, Chen Y, Wu Y, et al. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 2007; 32(2): 200-6.
    • Int J Hydrogen Energy , vol.32 , Issue.2 , pp. 200-206
    • Tao, Y.1    Chen, Y.2    Wu, Y.3
  • 35
    • 67650716342 scopus 로고    scopus 로고
    • Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation
    • Argun H, Kargi F, Kaplan IK. Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int J Hydrogen Energy 2009; 34(15): 6181-9.
    • Int J Hydrogen Energy , vol.34 , Issue.15 , pp. 6181-6189
    • Argun, H.1    Kargi, F.2    Kaplan, I.K.3
  • 36
    • 64549157146 scopus 로고    scopus 로고
    • Towards the integration of dark- and photofermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production
    • Belokopytov BF, Laurinavichius KS, Laurinavichene TV, et al. Towards the integration of dark- and photofermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production. Int J Hydrogen Energy 2009; 34(8): 3324-32.
    • Int J Hydrogen Energy , vol.34 , Issue.8 , pp. 3324-3332
    • Belokopytov, B.F.1    Laurinavichius, K.S.2    Laurinavichene, T.V.3
  • 37
    • 74449085975 scopus 로고    scopus 로고
    • Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations
    • Argun H, Kargi F. Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int J Hydrogen Energy 2010; 35(4): 1604-12.
    • Int J Hydrogen Energy , vol.35 , Issue.4 , pp. 1604-1612
    • Argun, H.1    Kargi, F.2
  • 38
    • 39849084054 scopus 로고    scopus 로고
    • Kinetics of two-stage fermentation process for the production of hydrogen
    • Nath K, Muthukumar M, Kumar A, et al. Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 2008; 33(4): 1195-203.
    • Int J Hydrogen Energy , vol.33 , Issue.4 , pp. 1195-1203
    • Nath, K.1    Muthukumar, M.2    Kumar, A.3
  • 39
    • 33750885810 scopus 로고    scopus 로고
    • Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
    • Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Env Sci Tec 2007; 37(1): 1-39.
    • Crit Rev Env Sci Tec , vol.37 , Issue.1 , pp. 1-39
    • Li, C.L.1    Fang, H.H.P.2
  • 40
    • 56449102456 scopus 로고    scopus 로고
    • Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation
    • Laurinavichene TV, Tekucheva DN, Laurinavichius KS, et al. Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation. Int J Hydrogen Energy 2008; 33(23): 7020-6.
    • Int J Hydrogen Energy , vol.33 , Issue.23 , pp. 7020-7026
    • Laurinavichene, T.V.1    Tekucheva, D.N.2    Laurinavichius, K.S.3
  • 41
    • 0032362223 scopus 로고    scopus 로고
    • Use of immobilized phototrophic microorganisms for wastewater treatment and simultaneous production of hydrogen
    • Tsygankov AA, Fedorov AS, Talipova IV, et al. Use of immobilized phototrophic microorganisms for wastewater treatment and simultaneous production of hydrogen. Appl Biochem Microbiol 1998; 34(4): 362-6.
    • Appl Biochem Microbiol , vol.34 , Issue.4 , pp. 362-366
    • Tsygankov, A.A.1    Fedorov, A.S.2    Talipova, I.V.3
  • 42
    • 65949105740 scopus 로고    scopus 로고
    • Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluent
    • Uyar B, Eroglu I, Yucel M, et al. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluent. Int J Hydrogen Energy 2009; 34: 4517-23.
    • Int J Hydrogen Energy , vol.34 , pp. 4517-4523
    • Uyar, B.1    Eroglu, I.2    Yucel, M.3
  • 43
    • 33646071873 scopus 로고    scopus 로고
    • Fermentative hydrogen production and bacterial community structure in highrate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge
    • Wu SY, Hung CH, Lin CN, et al. Fermentative hydrogen production and bacterial community structure in highrate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 2006; 93(5): 934-46.
    • Biotechnol Bioeng , vol.93 , Issue.5 , pp. 934-946
    • Wu, S.Y.1    Hung, C.H.2    Lin, C.N.3
  • 44
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: a review
    • Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 2009; 34(2): 799-811.
    • Int J Hydrogen Energy , vol.34 , Issue.2 , pp. 799-811
    • Wang, J.1    Wan, W.2
  • 45
    • 0002648566 scopus 로고    scopus 로고
    • Hydrogen production by photosynthetic bacteria: culture media, yields and efficiencies
    • In: Miyake J, Matsunaga T, San Pietro A, editors. Biohydrogen II. An approach to environmentally acceptable technology. Amsterdam: Pergamon
    • Rocha J, Barbosa HR, Wijffels RH. Hydrogen production by photosynthetic bacteria: culture media, yields and efficiencies. In: Miyake J, Matsunaga T, San Pietro A, editors. Biohydrogen II. An approach to environmentally acceptable technology. Amsterdam: Pergamon 2001; pp. 3-32.
    • (2001) , pp. 3-32
    • Rocha, J.1    Barbosa, H.R.2    Wijffels, R.H.3
  • 46
    • 0003659735 scopus 로고
    • Bergey's manual of determinative bacteriology
    • 9th, Baltimore: Williams and Wilkins
    • Holt JG, Krieg NR, Sneath PHA, et al. Bergey's manual of determinative bacteriology, 9th ed. Baltimore: Williams and Wilkins 1994.
    • (1994)
    • Holt, J.G.1    Krieg, N.R.2    Sneath, P.H.A.3
  • 47
    • 0035501530 scopus 로고    scopus 로고
    • Hydrogen production by four cultures with participation by anoxygenic photosynthetic bacterium and anaerobic bacterium in the presence of NH4
    • Zhu H, Wakayama T, Asada Y, et al. Hydrogen production by four cultures with participation by anoxygenic photosynthetic bacterium and anaerobic bacterium in the presence of NH4. Int J Hydrogen Energy 2001; 26(11): 1149-54.
    • Int J Hydrogen Energy , vol.26 , Issue.11 , pp. 1149-1154
    • Zhu, H.1    Wakayama, T.2    Asada, Y.3
  • 48
    • 33645708467 scopus 로고    scopus 로고
    • Hydrogen production from Chlamydomonas reinhardtii biomass using a twostep conversion process: Anaerobic conversion and photosynthetic fermentation
    • Kim MS, Baek JS, Yun YS, et al. Hydrogen production from Chlamydomonas reinhardtii biomass using a twostep conversion process: Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 2006; 31(6): 812-6.
    • Int J Hydrogen Energy , vol.31 , Issue.6 , pp. 812-816
    • Kim, M.S.1    Baek, J.S.2    Yun, Y.S.3
  • 49
    • 2942521322 scopus 로고    scopus 로고
    • Hydrogen photoproduction from starch in algal biomass
    • In: Miyake J, Matsunaga T, San Pietro A, Eds. Biohydrogen II: an approach to environmentally acceptable technology. Amsterdam: Pergamon
    • Ike A, Kawaguchi H, Hirata K, et al. Hydrogen photoproduction from starch in algal biomass. In: Miyake J, Matsunaga T, San Pietro A, Eds. Biohydrogen II: an approach to environmentally acceptable technology. Amsterdam: Pergamon 2001; pp. 53-61.
    • (2001) , pp. 53-61
    • Ike, A.1    Kawaguchi, H.2    Hirata, K.3
  • 50
    • 0035047816 scopus 로고    scopus 로고
    • H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus
    • Kawaguchi H, Hashimoto K, Hirata K, et al. H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 2001; 91: 277-82.
    • J Biosci Bioeng , vol.91 , pp. 277-282
    • Kawaguchi, H.1    Hashimoto, K.2    Hirata, K.3
  • 51
    • 0000149530 scopus 로고    scopus 로고
    • Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium
    • Miura Y, Saitoh C, Matsuoka S, et al. Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechol Biochem 1992; 56(5): 751-4.
    • Biosci Biotechol Biochem , vol.56 , Issue.5 , pp. 751-754
    • Miura, Y.1    Saitoh, C.2    Matsuoka, S.3
  • 52
    • 0001011489 scopus 로고    scopus 로고
    • Hydrogen production by photosynthetic microorganisms
    • Akano T, Miura H, Fukatsu K, et al. Hydrogen production by photosynthetic microorganisms. Appl Biochem Biotechnol 1996; 57-58(6): 677-88.
    • (1996) Appl Biochem Biotechnol , vol.57-58 , Issue.6 , pp. 677-688
    • Akano, T.1    Miura, H.2    Fukatsu, K.3
  • 53
    • 0344534171 scopus 로고    scopus 로고
    • Stably sustained hydrogen production by biophotolysis in natural day/night cycle
    • SS
    • Miura Y, Akano T, Fukatsu K, et al. Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energ Convers Manage 1997; 38(SS): S533-7.
    • (1997) Energ Convers Manage , vol.38
    • Miura, Y.1    Akano, T.2    Fukatsu, K.3
  • 54
    • 0000044296 scopus 로고    scopus 로고
    • Hydrogenase from the unicellular cyanobacterium, Microcystis aeruginosa
    • Asada Y, Kawamura S, Ho KK. Hydrogenase from the unicellular cyanobacterium, Microcystis aeruginosa. Phytochemistry 1987; 26(3): 637-40.
    • Phytochemistry , vol.26 , Issue.3 , pp. 637-640
    • Asada, Y.1    Kawamura, S.2    Ho, K.K.3
  • 55
    • 35348893751 scopus 로고    scopus 로고
    • Two-stage system for hydrogen production by immobilized cyanobacterium Gloeocapsa alpicola CALU 743
    • Serebryakova LT, Tsygankov AA. Two-stage system for hydrogen production by immobilized cyanobacterium Gloeocapsa alpicola CALU 743. Biotechnol Prog 2007; 23(5): 1106-10.
    • Biotechnol Prog , vol.23 , Issue.5 , pp. 1106-1110
    • Serebryakova, L.T.1    Tsygankov, A.A.2
  • 56
    • 33746928716 scopus 로고    scopus 로고
    • Integrated biological hydrogen production
    • Melis A, Melnicki R. Integrated biological hydrogen production. Int J Hydrogen Energy 2006; 31(11-12): 1563-73.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.11-12 , pp. 1563-1573
    • Melis, A.1    Melnicki, R.2
  • 57
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • USA
    • Cheng SA, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 2007; 104: 18871-3.
    • Proc Natl Acad Sci , vol.104 , pp. 18871-18873
    • Cheng, S.A.1    Logan, B.E.2
  • 58
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call DF, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 2008; 42: 3401-6.
    • Environ Sci Technol , vol.42 , pp. 3401-3406
    • Call, D.F.1    Logan, B.E.2
  • 59
    • 61549120433 scopus 로고    scopus 로고
    • Hydrogen and methane production from swine wastewater using microbial electrolysis cells
    • Wagner RC, Regan JM, Oh SE, et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 2009; 43(5): 1480-8.
    • Water Res , vol.43 , Issue.5 , pp. 1480-1488
    • Wagner, R.C.1    Regan, J.M.2    Oh, S.E.3
  • 60
    • 67349179146 scopus 로고    scopus 로고
    • Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
    • Lu L, Ren NQ, Xing D, et al. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 2009; 24(10): 3055-60.
    • Biosens Bioelectron , vol.24 , Issue.10 , pp. 3055-3060
    • Lu, L.1    Ren, N.Q.2    Xing, D.3
  • 61
    • 67650713527 scopus 로고    scopus 로고
    • Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
    • Lalaurette E, Thammannagowda S, Mohagheghi A, et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 2009; 34(15): 6201-10.
    • Int J Hydrogen Energy , vol.34 , Issue.15 , pp. 6201-6210
    • Lalaurette, E.1    Thammannagowda, S.2    Mohagheghi, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.