메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 207-217

Random, but uniform please: Requirements for synthetic precipitation generation for computer simulations in agriculture

Author keywords

Hydrologic simulation; Precipitation generation; Random numbers; Weather generator

Indexed keywords

ALTERNATE SOURCE; ARID AND SEMI-ARID REGIONS; DISTRIBUTION STATISTICS; HYDROLOGIC PROCESS; HYDROLOGIC SIMULATIONS; LONG TERM SIMULATION; MODEL SIMULATION; PRECIPITATION DATA; PRECIPITATION MODEL; RAINFALL EVENT; RANDOM NUMBERS; RESAMPLING; SMALL SAMPLES; STANDARD DEVIATION; STOCHASTIC NATURE; THEORETICAL VALUES; UNIFORM DISTRIBUTION; WEATHER GENERATOR; WEATHER STATIONS; WESTERN UNITED STATES;

EID: 84860331472     PISSN: 08838542     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (15)
  • 1
    • 0030483167 scopus 로고    scopus 로고
    • Impact of cligen parameters on wepp-predicted average annual soil loss
    • Baffaut, C., M. A. Nearing, and A. D. Nicks. 1996. Impact of CLIGEN parameters on WEPP-predicted average annual soil loss. Trans. ASAE 39(2): 447-457.
    • (1996) Trans. ASAE , vol.39 , Issue.2 , pp. 447-457
    • Baffaut, C.1    Nearing, M.A.2    Nicks, A.D.3
  • 2
    • 0141698220 scopus 로고    scopus 로고
    • Generating representative sequences of daily precipitation for agricultural simulations
    • Garbrecht, J. D., and J. X. Zhang. 2003. Generating representative sequences of daily precipitation for agricultural simulations. Applied Eng. in Agric. 19(4): 423-429.
    • (2003) Applied Eng. in Agric , vol.19 , Issue.4 , pp. 423-429
    • Garbrecht, J.D.1    Zhang, J.X.2
  • 3
    • 0030390707 scopus 로고    scopus 로고
    • Stochastic weather simulation: Overview and analysis of two commonly used models
    • Johnson, G. L., C. L. Hanson, S. P. Hargeree, and E. B. Ballard. 1996. Stochastic weather simulation: Overview and analysis of two commonly used models. J. Applied Meteorology 35(10): 1878-1896.
    • (1996) J. Applied Meteorology , vol.35 , Issue.10 , pp. 1878-1896
    • Johnson, G.L.1    Hanson, C.L.2    Hargeree, S.P.3    Ballard, E.B.4
  • 4
    • 0033851837 scopus 로고    scopus 로고
    • Spatial variability and interpolation of stochastic weather simulation model parameters
    • Johnson, G. L., C. Daly, G. H. Taylor, and C. L. Hanson. 2000. Spatial variability and interpolation of stochastic weather simulation model parameters. J. Applied Meteorology 39(6): 778-796. (Pubitemid 30603231)
    • (2000) Journal of Applied Meteorology , vol.39 , Issue.6 , pp. 778-796
    • Johnson, G.L.1    Daly, C.2    Taylor, G.H.3    Hanson, C.L.4
  • 5
    • 42149160183 scopus 로고    scopus 로고
    • Implementing quality control on a random number stream to improve a stochastic weather generator
    • DOI 10.1002/hyp.6668
    • Meyer, C. R., C. Renschler, and R. C. Vining. 2008. Implementing quality control on a random number stream to improve a stochastic weather generator. Hydrol. Processes 22(8): 1069-1079. (Pubitemid 351523456)
    • (2008) Hydrological Processes , vol.22 , Issue.8 , pp. 1069-1079
    • Meyer, C.R.1    Renschler, C.S.2    Vining, R.C.3
  • 6
    • 84860339210 scopus 로고    scopus 로고
    • Microsoft, Microsoft Office Professional Edition 2003. Redmond, Wash. Microsoft Corporation
    • Microsoft. 2003. Microsoft Office Excel 2003 SP2. Microsoft Office Professional Edition 2003. Redmond, Wash. Microsoft Corporation.
    • (2003) Microsoft Office Excel 2003 SP2
  • 7
    • 0004180347 scopus 로고
    • In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation,2.1:2.22. D. C. Flanagan and M. A. Nearing, eds. USDA-ARS National Soil Erosion Research Laboratory
    • Nicks, A. D., L. J. Lane, and G. A. Gander. 1995. Weather Generator. In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation, 2.1:2.22. D. C. Flanagan and M. A. Nearing, eds. USDA-ARS National Soil Erosion Research Laboratory.
    • (1995) Weather Generator
    • Nicks, A.D.1    Lane, L.J.2    Gander, G.A.3
  • 8
    • 0000997571 scopus 로고
    • Quasi-monte carlo methods and pseudo-random numbers
    • Niederreiter, H. 1978. Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin of the Mathematical Society 84(6): 957-1040.
    • (1978) Bulletin of the Mathematical Society , vol.84 , Issue.6 , pp. 957-1040
    • Niederreiter, H.1
  • 11
    • 33747905041 scopus 로고
    • Weather data generation
    • D. G. DeCoursey, ed. Washington, D.C.: United States Department of Agriculture, Agricultural Research Service, Government Printing Office
    • Richardson, C. W. 1985. Weather data generation. In Proc. of the Natural Resources Modeling Symposium, D. G. DeCoursey, ed. Washington, D.C.: United States Department of Agriculture, Agricultural Research Service, Government Printing Office.
    • (1985) Proc. of the Natural Resources Modeling Symposium
    • Richardson, C.W.1
  • 13
    • 0242338401 scopus 로고    scopus 로고
    • A statistical comparison of the stochastic weather generators WGEN and SIMMETEO
    • Soltani, A., and G. Hoogenboom. 2003. A statistical comparison of the stochastic weather generators WGEN and SMETEO. Climate Research 24(3): 215-230. (Pubitemid 37332564)
    • (2003) Climate Research , vol.24 , Issue.3 , pp. 215-230
    • Soltani, A.1    Hoogenboom, G.2
  • 14
    • 84860348059 scopus 로고    scopus 로고
    • Salford, Manchester, United Kingdom: Salford Software Ltd
    • Salford. 1998. FTN95 Library Reference. Manchester, United Kingdom: Salford Software Ltd.
    • (1998) FTN95 Library Reference


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.