메뉴 건너뛰기




Volumn 61, Issue 6, 2011, Pages 2463-2506

Global existence for coupled Klein-Gordon equations with different speeds

Author keywords

Global existence; Klein Gordon; Resonances

Indexed keywords


EID: 84860320260     PISSN: 03730956     EISSN: None     Source Type: Journal    
DOI: 10.5802/aif.2680     Document Type: Article
Times cited : (34)

References (20)
  • 1
    • 84990602498 scopus 로고
    • Global solutions of nonlinear hyperbolic equations for small initial data
    • D. CHRISTODOULOU, "Global solutions of nonlinear hyperbolic equations for small initial data", Comm. Pure Appl. Math. 39 (1986), no. 2, p. 267-282.
    • (1986) Comm. Pure Appl. Math. , vol.39 , Issue.2 , pp. 267-282
    • Christodoulou, D.1
  • 2
    • 0001923237 scopus 로고
    • Au delà des opérateurs pseudo-différentiels
    • Société Mathématique de France, Paris
    • R. COIFMAN & Y. MEYER, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978.
    • (1978) Astérisque , vol.57
    • Coifman, R.1    Meyer, Y.2
  • 3
    • 0037906740 scopus 로고    scopus 로고
    • Almost global existence for solutions of semilinear Klein-Gordon equations with small weakly decaying Cauchy data
    • J.-M. DELORT & D. FANG, "Almost global existence for solutions of semilinear Klein-Gordon equations with small weakly decaying Cauchy data", Comm. Partial Differential Equations 25 (2000), no. 11-12, p. 2119-1269.
    • (2000) Comm. Partial Differential Equations , vol.25 , Issue.11-12 , pp. 2119-1269
    • Delort, J.-M.1    Fang, D.2
  • 4
    • 2942657235 scopus 로고    scopus 로고
    • Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions
    • DOI 10.1016/j.jfa.2004.01.008
    • J.-M. DELORT, D. FANG & R. XUE, "Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions", J. Funct. Anal. 211 (2004), no. 2, p. 288-323. (Pubitemid 38782157)
    • (2004) Journal of Functional Analysis , vol.211 , Issue.2 , pp. 288-323
    • Delort, J.-M.1    Fang, D.2    Xue, R.3
  • 8
    • 0001270512 scopus 로고
    • Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations
    • J. GINIBRE & G. VELO, "Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations", Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), no. 4, p. 399-442.
    • (1985) Ann. Inst. H. Poincaré Phys. Théor. , vol.43 , Issue.4 , pp. 399-442
    • Ginibre, J.1    Velo, G.2
  • 9
    • 55349101632 scopus 로고    scopus 로고
    • Nonlinear scattering for a system of nonlinear Klein-Gordon equations
    • N. HAYASHI, P. NAUMKIN & R. WIBOWO, "Nonlinear scattering for a system of nonlinear Klein-Gordon equations", J. Math. Phys. 49 (2008), no. 10.
    • (2008) J. Math. Phys. , vol.49 , Issue.10
    • Hayashi, N.1    Naumkin, P.2    Wibowo, R.3
  • 10
    • 0003216788 scopus 로고    scopus 로고
    • Lectures on nonlinear hyperbolic differential equations
    • Springer-Verlag, Berlin
    • L. HÖRMANDER, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997.
    • (1997) Mathématiques & Applications (Berlin) , vol.26
    • Hörmander, L.1
  • 12
    • 84980140413 scopus 로고
    • Blow-up for quasilinear wave equations in three space dimensions
    • F. JOHN, "Blow-up for quasilinear wave equations in three space dimensions", Comm. Pure Appl. Math. 34 (1981), no. 1, p. 29-51.
    • (1981) Comm. Pure Appl. Math. , vol.34 , Issue.1 , pp. 29-51
    • John, F.1
  • 13
    • 33748525858 scopus 로고    scopus 로고
    • Global small amplitude solutions to systems of nonlinear wave equations with multiple speeds
    • S. KATAYAMA & K. YOKOYAMA, "Global small amplitude solutions to systems of nonlinear wave equations with multiple speeds", Osaka J. Math. 43 (2006), no. 2, p. 283-326. (Pubitemid 44369839)
    • (2006) Osaka Journal of Mathematics , vol.43 , Issue.2 , pp. 283-326
    • Katayama, S.1    Yokoyama, K.2
  • 15
    • 84990619688 scopus 로고
    • Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions
    • - "Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions", Comm. Pure Appl. Math. 38 (1985), no. 5, p. 631-641.
    • (1985) Comm. Pure Appl. Math. , vol.38 , Issue.5 , pp. 631-641
    • Klainerman, S.1
  • 16
    • 33748544360 scopus 로고    scopus 로고
    • Counterexample to global existence for systems of nonlinear wave equations with different propagation speeds
    • M. OHTA, "Counterexample to global existence for systems of nonlinear wave equations with different propagation speeds", Funkcial. Ekvac. 46 (2003), no. 3, p. 471-477.
    • (2003) Funkcial. Ekvac. , vol.46 , Issue.3 , pp. 471-477
    • Ohta, M.1
  • 17
    • 84990623722 scopus 로고
    • Normal forms and quadratic nonlinear Klein-Gordon equations
    • J. SHATAH, "Normal forms and quadratic nonlinear Klein-Gordon equations", Comm. Pure Appl. Math. 38 (1985), no. 5, p. 685-696.
    • (1985) Comm. Pure Appl. Math. , vol.38 , Issue.5 , pp. 685-696
    • Shatah, J.1
  • 18
    • 0036050729 scopus 로고    scopus 로고
    • Global existence for systems of nonlinear wave equations in 3D with multiple speeds
    • PII S0036141000378966
    • T. SIDERIS & S.-Y. TU, "Global existence for systems of nonlinear wave equations in 3D with multiple speeds", SIAM J. Math. Anal. 33 (2001), no. 2, p. 477-488. (Pubitemid 33787294)
    • (2001) SIAM Journal on Mathematical Analysis , vol.33 , Issue.2 , pp. 477-488
    • Sideris, T.C.1    Tu, S.-Y.2
  • 19
    • 84964744325 scopus 로고    scopus 로고
    • Stability of constant equilibrium for the Maxwell-Higgs equations
    • Y. TSUTSUMI, "Stability of constant equilibrium for the Maxwell-Higgs equations", Funkcial. Ekvac. 46 (2003), no. 1, p. 41-62.
    • (2003) Funkcial. Ekvac. , vol.46 , Issue.1 , pp. 41-62
    • Tsutsumi, Y.1
  • 20
    • 0001321428 scopus 로고    scopus 로고
    • Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions
    • K. YOKOYAMA, "Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions", J. Math. Soc. Japan 52 (2000), no. 3, p. 609-632.
    • (2000) J. Math. Soc. Japan , vol.52 , Issue.3 , pp. 609-632
    • Yokoyama, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.