메뉴 건너뛰기




Volumn 47, Issue 5, 2011, Pages

Bayesian calibration of a flood inundation model using spatial data

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN CALIBRATION; BAYESIAN PROCEDURES; BAYESIAN THEORY; BEST MODEL; CALIBRATION DATA; COHERENT FRAMEWORKS; COMPUTER MODELS; FLOOD MODELS; GAUSSIAN MODEL; MODEL CALIBRATION; MULTIPLE SOURCE; OBSERVATION ERRORS; POSTERIOR DISTRIBUTIONS; PROBABILISTIC PREDICTION; RIVER THAMES; SPATIAL DATA; SPATIAL OBSERVATION;

EID: 84860316445     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2009WR008541     Document Type: Article
Times cited : (47)

References (53)
  • 1
    • 65849338149 scopus 로고    scopus 로고
    • Quantification of uncertainties in flood risk assessments
    • Apel, H., B. Merz, and A. H. Thieken (2008), Quantification of uncertainties in flood risk assessments, J. River Basin Manage., 6, 149-162.
    • (2008) J. River Basin Manage. , vol.6 , pp. 149-162
    • Apel, H.1    Merz, B.2    Thieken, A.H.3
  • 3
    • 0036646801 scopus 로고    scopus 로고
    • Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE
    • DOI 10.1002/hyp.398
    • Aronica, G., P. D. Bates, and M. S. Horritt (2005), Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Processes, 16, 2001-2016. (Pubitemid 34817324)
    • (2002) Hydrological Processes , vol.16 , Issue.10 , pp. 2001-2016
    • Aronica, G.1    Bates, P.D.2    Horritt, M.S.3
  • 4
    • 0034633240 scopus 로고    scopus 로고
    • A simple raster-based model for floodplain inundation
    • Bates, P. D., and A. P. J. De Roo (2000), A simple raster-based model for floodplain inundation, J. Hydrol., 236, 54-77.
    • (2000) J. Hydrol. , vol.236 , pp. 54-77
    • Bates, P.D.1    De Roo, A.P.J.2
  • 5
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320, 18-36.
    • (2006) J. Hydrol. , vol.320 , pp. 18-36
    • Beven, K.1
  • 6
    • 34247893975 scopus 로고    scopus 로고
    • Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini
    • DOI 10.1016/j.jhydrol.2007.02.023, PII S0022169407001230
    • Beven, K., P. Smith, and J. Freer (2007), Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini, J. Hydrol., 338, 315-318. (Pubitemid 46693809)
    • (2007) Journal of Hydrology , vol.338 , Issue.3-4 , pp. 315-318
    • Beven, K.1    Smith, P.2    Freer, J.3
  • 7
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven, K. J., and A. M. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279-298.
    • (1992) Hydrol. Processes , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 8
    • 33745834387 scopus 로고    scopus 로고
    • Statistical calibration of computer simulations
    • DOI 10.1016/j.ress.2005.11.032, PII S0951832005002449
    • Campbell, K. (2006), Statistical calibration of computer simulations, Reliab. Eng. Syst. Safety, 91, 1358-1363. (Pubitemid 44026673)
    • (2006) Reliability Engineering and System Safety , vol.91 , Issue.10-11 , pp. 1358-1363
    • Campbell, K.1
  • 9
    • 69249168661 scopus 로고    scopus 로고
    • Gaussian process emulation of dynamic computer codes
    • Conti, S., J. P. Gosling, J. E. Oakley, and A. O'Hagan (2009), Gaussian process emulation of dynamic computer codes, Biometrika, 96, 663-676.
    • (2009) Biometrika , vol.96 , pp. 663-676
    • Conti, S.1    Gosling, J.P.2    Oakley, J.E.3    O'hagan, A.4
  • 10
    • 33644495279 scopus 로고    scopus 로고
    • Of data and models
    • Cunge, J. (2003), Of data and models, Hydroinformatics, 5, 75-96.
    • (2003) Hydroinformatics , vol.5 , pp. 75-96
    • Cunge, J.1
  • 11
    • 33750542151 scopus 로고    scopus 로고
    • Adaptive importance sampling for risk analysis of complex infrastructure systems
    • Dawson, R. J., and J. W. Hall (2006), Adaptive importance sampling for risk analysis of complex infrastructure systems, Proc. R. Soc. A., 462, 3343-3362.
    • (2006) Proc. R. Soc. A. , vol.462 , pp. 3343-3362
    • Dawson, R.J.1    Hall, J.W.2
  • 13
    • 28444445926 scopus 로고    scopus 로고
    • Development Core Team, R Found. for Stat. Comput., Vienna, Austria
    • Development Core Team (2005), R: A Language and Environment for Statistical Computing, 409 pp., R Found. for Stat. Comput., Vienna, Austria.
    • (2005) R: A Language and Environment for Statistical Computing
  • 14
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • DOI 10.1016/j.advwatres.2006.11.014, PII S030917080600220X
    • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371-1386, doi:10.1016/j.advwatres.2006.11.014. (Pubitemid 46323445)
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 15
    • 0022511581 scopus 로고
    • Roughness coefficients for routing surface runoff
    • Engman, E. T. (1986), Roughness coefficients for routing surface runoff, J. Irrig. Drain, Div., 112, 39-53. (Pubitemid 172226)
    • (1986) J. IRRIG. & DRAIN. ENGNG. (ASCE) , vol.112 , Issue.1 , pp. 39-53
    • Engman, E.T.1
  • 17
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Chapman and Hall, London
    • Gelman, A. (1996), Inference and monitoring convergence, in Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, pp. 131-144, Chapman and Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-144
    • Gelman, A.1
  • 18
    • 16244396056 scopus 로고    scopus 로고
    • Probabilistic formulations for transferring inferences from mathematical models to physical systems
    • DOI 10.1137/S106482750342670X
    • Goldstein, M., and J. C. Rougier (2004), Probabilistic formulations for transferring inferences from mathematical models to physical systems, SIAM J. Sci. Comput., 26, 467-487. (Pubitemid 40449853)
    • (2005) SIAM Journal of Scientific Computing , vol.26 , Issue.2 , pp. 467-487
    • Goldstein, M.1    Rougier, J.2
  • 19
    • 56949088109 scopus 로고    scopus 로고
    • Reified Bayesian modelling and inference for physical systems
    • Goldstein, M., and J. C. Rougier (2009), Reified Bayesian modelling and inference for physical systems, J. Stat. Plann. Inference, 139, 1221-1239.
    • (2009) J. Stat. Plann. Inference , vol.139 , pp. 1221-1239
    • Goldstein, M.1    Rougier, J.C.2
  • 20
    • 2542418586 scopus 로고    scopus 로고
    • Handling uncertainty in the hydroinformatic process
    • Hall, J. W. (2003), Handling uncertainty in the hydroinformatic process, Hydroinformatics, 5, 215-232.
    • (2003) Hydroinformatics , vol.5 , pp. 215-232
    • Hall, J.W.1
  • 21
    • 66049142772 scopus 로고    scopus 로고
    • A framework for uncertainty analysis in flood risk management decisions
    • Hall, J. W., and D. Solomatine (2008), A framework for uncertainty analysis in flood risk management decisions, J. River Basin Manage., 6, 85-98.
    • (2008) J. River Basin Manage. , vol.6 , pp. 85-98
    • Hall, J.W.1    Solomatine, D.2
  • 22
    • 13244267147 scopus 로고    scopus 로고
    • Distributed sensitivity analysis of flood inundation model calibration
    • DOI 10.1061/(ASCE)0733-9429(2005)131:2(117)
    • Hall, J. W., S. Tarantola, P. D. Bates, and M. S. Horritt (2005), Distributed sensitivity analysis of flood inundation model calibration, J. Hydraul. Eng., 131, 117-126. (Pubitemid 40191047)
    • (2005) Journal of Hydraulic Engineering , vol.131 , Issue.2 , pp. 117-126
    • Hall, J.W.1    Tarantola, S.2    Bates, P.D.3    Horritt, M.S.4
  • 23
    • 27544463979 scopus 로고    scopus 로고
    • Introducing BACCO, an R bundle for Bayesian analysis of computer code output
    • Hankin, R. (2005), Introducing BACCO, an R bundle for Bayesian analysis of computer code output, J. Stat. Software, 14, 21.
    • (2005) J. Stat. Software , vol.14 , pp. 21
    • Hankin, R.1
  • 24
    • 16244384565 scopus 로고    scopus 로고
    • Combining field data and computer simulations for calibration and prediction
    • Higdon, D., M. C. Kennedy, J. Cavendish, J. Cafeo, and R. D. Ryne (2004), Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26, 448-466.
    • (2004) SIAM J. Sci. Comput. , vol.26 , pp. 448-466
    • Higdon, D.1    Kennedy, M.C.2    Cavendish, J.3    Cafeo, J.4    Ryne, R.D.5
  • 25
    • 0035871638 scopus 로고    scopus 로고
    • Predicting floodplain inundation: Raster-based modelling versus the finite-element approach
    • DOI 10.1002/hyp.188
    • Horritt, M. S., and P. D. Bates (2001), Predicting floodplain inundation: Raster-based modelling versus the finite element approach, Hydrol. Processes, 15, 825-842. (Pubitemid 32277221)
    • (2001) Hydrological Processes , vol.15 , Issue.5 , pp. 825-842
    • Horritt, M.S.1    Bates, P.D.2
  • 26
    • 0036845180 scopus 로고    scopus 로고
    • Evaluation of 1D and 2D numerical models for predicting river flood inundation
    • DOI 10.1016/S0022-1694(02)00121-X, PII S002216940200121X
    • Horritt, M. S., and P. D. Bates (2002), Evaluation of 1-D and 2-D numerical models for predicting river flood inundation, J. Hydrol., 268, 87-99. (Pubitemid 35307224)
    • (2002) Journal of Hydrology , vol.268 , Issue.1-4 , pp. 87-99
    • Horritt, M.S.1    Bates, P.D.2
  • 27
    • 33644550945 scopus 로고    scopus 로고
    • Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artifacts
    • doi:10/1016/j.hydrol.2005.07.013
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artifacts J. Hydrology, 320, 173-186, doi:10/1016/j.hydrol.2005.07.013.
    • (2006) J. Hydrology , vol.320 , pp. 173-186
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 28
    • 33644521269 scopus 로고    scopus 로고
    • Calibration of conceptual hydrological models revisted: 2. Improving optimisation and analysis
    • doi:10.1016/j.hydrol.2005.07.013
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Calibration of conceptual hydrological models revisted: 2. Improving optimisation and analysis J. Hydrology, 320, 187-201, doi:10.1016/j.hydrol.2005.07.013.
    • (2006) J. Hydrology , vol.320 , pp. 187-201
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 31
    • 0035426007 scopus 로고    scopus 로고
    • The case for probabilistic forecasting in hydrology
    • DOI 10.1016/S0022-1694(01)00420-6, PII S0022169401004206
    • Krzysztofowicz, R. (2001), The case for probabilistic forecasting in hydrology, J. Hydrol., 249, 2-9, doi:10.1016/S0022-1694(01)00420-6. (Pubitemid 32664992)
    • (2001) Journal of Hydrology , vol.249 , Issue.1-4 , pp. 2-9
    • Krzysztofowicz, R.1
  • 32
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35(9), 2739-2750. (Pubitemid 29412106)
    • (1999) Water Resources Research , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 33
    • 70350742523 scopus 로고    scopus 로고
    • A dynamic modelling strategy for Bayesian computer model emulation
    • doi:10.1214/09-BA415
    • Liu, F., and M. West (2009), A dynamic modelling strategy for Bayesian computer model emulation, J. Bayesian Anal., 4(2), 393-412, doi:10.1214/09- BA415.
    • (2009) J. Bayesian Anal. , vol.4 , Issue.2 , pp. 393-412
    • Liu, F.1    West, M.2
  • 34
    • 33748808177 scopus 로고    scopus 로고
    • Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology
    • DOI 10.1016/j.jhydrol.2006.04.046, PII S0022169406002162, Hydro-Ecological Functioning of the Pang and Lambourn Catchments, UK Results from the Lowland Catchment Research (LOCAR) Initiative
    • Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, J. Hydrol., 330, 368-381. (Pubitemid 44528546)
    • (2006) Journal of Hydrology , vol.330 , Issue.1-2 , pp. 368-381
    • Mantovan, P.1    Todini, E.2
  • 36
    • 25844526502 scopus 로고    scopus 로고
    • Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations
    • DOI 10.1029/2004WR003826, W08406
    • Montanari, A. (2005), Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfallrunoff simulations, Water Resour. Res., 41, W08406, doi:10.1029/ 2004WR003826. (Pubitemid 41393335)
    • (2005) Water Resources Research , vol.41 , Issue.8 , pp. 1-13
    • Montanari, A.1
  • 37
    • 2542555104 scopus 로고    scopus 로고
    • A stochastic approach for assessing the uncertainty of rainfall-runoff simulations
    • doi:10.1029/2003WR002540
    • Montanari, A., and A. Brath (2004), A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, doi:10.1029/2003WR002540.
    • (2004) Water Resour. Res. , vol.40
    • Montanari, A.1    Brath, A.2
  • 38
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • DOI 10.1029/2004WR003604, W05012
    • Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005), Uncertainty assessment of hydrologic model states and parameters : Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604. (Pubitemid 40856462)
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. 1-17
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 39
    • 0039484815 scopus 로고    scopus 로고
    • Eliciting Gaussian process priors for complex computer codes
    • Oakley, J. (2002), Eliciting Gaussian process priors for complex computer codes, Statistician, 51, 81-97.
    • (2002) Statistician , vol.51 , pp. 81-97
    • Oakley, J.1
  • 40
    • 0041399511 scopus 로고    scopus 로고
    • Bayesian inference for the uncertainty distribution of computer model outputs
    • DOI 10.1093/biomet/89.4.769
    • Oakley, J., and A. O'Hagan (2002), Bayesian inference for the uncertainty distribution of computer model outputs, Biometrika, 89, 769-784. (Pubitemid 41311943)
    • (2002) Biometrika , vol.89 , Issue.4 , pp. 769-784
    • Oakley, J.1    O'Hagan, A.2
  • 41
    • 0031212595 scopus 로고    scopus 로고
    • Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: A case study in Germany
    • Oberstadler, R., H. Hoensch, and D. Huth (1997), Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany, Hydrol. Processes, 10, 1415-25. (Pubitemid 127559468)
    • (1997) Hydrological Processes , vol.11 , Issue.10 , pp. 1415-1425
    • Oberstadler, R.1    Honsch, H.2    Huth, D.3
  • 43
    • 0003030680 scopus 로고    scopus 로고
    • Implementing MCMC
    • edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Chapman and Hall, London
    • Raftery, A. E., and S. M. Lewis (1996), Implementing MCMC, in Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, pp. 115-130, Chapman and Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 115-130
    • Raftery, A.E.1    Lewis, S.M.2
  • 44
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, G. Kuczera, M. A. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res. , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.A.4    Franks, S.W.5
  • 46
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha, D. L., and D. P. Solomatine (2006), Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19, 225-235.
    • (2006) Neural Networks , vol.19 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 47
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • doi:10.1029/2008WR006825
    • Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/2008WR006825.
    • (2009) Water Resour. Res. , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 48
    • 7244232811 scopus 로고    scopus 로고
    • Role and treatment of uncertainty in real-time flood forecasting
    • DOI 10.1002/hyp.5687
    • Todini, E. (2004), Role and treatment of uncertainty in real-time flood forecasting, Hydrol. Processes, 18, 2743-2746. (Pubitemid 39437286)
    • (2004) Hydrological Processes , vol.18 , Issue.14 , pp. 2743-2746
    • Todini, E.1
  • 49
    • 33846392553 scopus 로고    scopus 로고
    • Hydrological catchment modelling: Past, present and future
    • Todini, E. (2007), Hydrological catchment modelling: Past, present and future, Hydrol. Earth Syst. Sci., 11, 468-482. (Pubitemid 46134786)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.1 , pp. 468-482
    • Todini, E.1
  • 50
    • 66049147497 scopus 로고    scopus 로고
    • Predictive uncertainty in flood forecasting models
    • Todini, E. (2008), Predictive uncertainty in flood forecasting models, J. River Basin Manage., 6, 123-137.
    • (2008) J. River Basin Manage. , vol.6 , pp. 123-137
    • Todini, E.1
  • 52
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • DOI 10.1029/2004WR003059, W01017
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059. (Pubitemid 40359297)
    • (2005) Water Resources Research , vol.41 , Issue.1 , pp. 1-17
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.