메뉴 건너뛰기




Volumn 36, Issue 1, 2012, Pages 61-72

A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases

Author keywords

Artificial neural network; Burg autoregressive method; Discrete fourier transform; Heart sound; Principal component analysis

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CONTROLLED STUDY; DECISION SUPPORT SYSTEM; FEMALE; FOURIER TRANSFORMATION; HEART SOUND; HUMAN; MAJOR CLINICAL STUDY; MALE; MEDICAL INFORMATION SYSTEM; MITRAL VALVE STENOSIS; PRINCIPAL COMPONENT ANALYSIS; PULMONARY VALVE STENOSIS; STETHOSCOPE; ADOLESCENT; AGED; CHILD; COMPUTER INTERFACE; FOURIER ANALYSIS; HEART AUSCULTATION; INSTRUMENTATION; METHODOLOGY; MIDDLE AGED; PRESCHOOL CHILD; SIGNAL PROCESSING; VALVULAR HEART DISEASE;

EID: 84860250399     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9446-7     Document Type: Article
Times cited : (97)

References (39)
  • 1
    • 33646158448 scopus 로고    scopus 로고
    • A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope
    • Jiang, Z., and Choi, S., A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst Appl 31(2):286-298, 2006.
    • (2006) Expert Syst Appl , vol.31 , Issue.2 , pp. 286-298
    • Jiang, Z.1    Choi, S.2
  • 3
    • 33846419483 scopus 로고    scopus 로고
    • Classification of mitral stenosis from Doppler signals using short time Fourier transform and artificial neural networks
    • DOI 10.1016/j.eswa.2006.05.011, PII S095741740600162X
    • Kara, S., Classification of mitral stenosis from Doppler signals using short time Fourier transform and artificial neural Networks. Expert Syst Appl 33:468-475, 2007. (Pubitemid 46150049)
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 468-475
    • Kara, S.1
  • 8
    • 0141926712 scopus 로고    scopus 로고
    • Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress
    • DOI 10.1007/BF02345323
    • Sinha, R. K., Artificial neural network detects changes in electroencephalogram power spectrum of different sleep-wake states in an animal model of heat stress. Med Biol Eng Comput 41:595-600, 2003. (Pubitemid 37258925)
    • (2003) Medical and Biological Engineering and Computing , vol.41 , Issue.5 , pp. 595-600
    • Sinha, R.K.1
  • 10
    • 0033768206 scopus 로고    scopus 로고
    • Cardiovascular disease: Foreword
    • O'Rourke, R. A., Cardiovascular disease: foreword. Curr Probl Cardiol 25(11):786-825, 2000.
    • (2000) Curr Probl Cardiol , vol.25 , Issue.11 , pp. 786-825
    • O'Rourke, R.A.1
  • 11
    • 0034429150 scopus 로고    scopus 로고
    • Analysis and classification of heart sounds and murmurs based on the instantaneous energy and frequency estimations
    • Sharif, Z., Zainal, M. S., Sha'ameri, A. Z., and Salleh, S. H. S., Analysis and classification of heart sounds and murmurs based on the instantaneous energy and frequency estimations. Tencon 41:130-134, 2000.
    • (2000) Tencon , vol.41 , pp. 130-134
    • Sharif, Z.1    Zainal, M.S.2    Sha'Ameri, A.Z.3    Salleh, S.H.S.4
  • 13
    • 0036053481 scopus 로고    scopus 로고
    • Classifying coronary dysfunction using neural networks through cardiovascular auscultation
    • Folland, R., Hines, E. L., Boilot, P., and Morgan, D., Classifying coronary dysfunction using neural networks through cardiovascular auscultation. Med Biol Eng Comput 40:339-343, 2002.
    • (2002) Med Biol Eng Comput , vol.40 , pp. 339-343
    • Folland, R.1    Hines, E.L.2    Boilot, P.3    Morgan, D.4
  • 14
    • 16244367427 scopus 로고    scopus 로고
    • A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics
    • DOI 10.1016/j.artmed.2004.07.008
    • Bhatikar, S. R., DeGroff, C., and Mahajan, R. L., classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics. Artif Intell Med 33:251-260, 2005. (Pubitemid 40462459)
    • (2005) Artificial Intelligence in Medicine , vol.33 , Issue.3 , pp. 251-260
    • Bhatikar, S.R.1    DeGroff, C.2    Mahajan, R.L.3
  • 15
    • 2342620190 scopus 로고    scopus 로고
    • Heart sound analysis for symptom detection and computer-aided diagnosis
    • Reed, T. R., Reed, N. E., and Fritzson, P., Heart sound analysis for symptom detection and computer-aided diagnosis. Simul Model Practice Theory 12(2):129-146, 2004.
    • (2004) Simul Model Practice Theory , vol.12 , Issue.2 , pp. 129-146
    • Reed, T.R.1    Reed, N.E.2    Fritzson, P.3
  • 16
    • 34250850214 scopus 로고    scopus 로고
    • Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation
    • DOI 10.1007/s10916-007-9056-1
    • Sinha, R. K., Aggarwal, Y., and Das, B. N., Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation. J Med Syst 31:205-209, 2007. (Pubitemid 46985762)
    • (2007) Journal of Medical Systems , vol.31 , Issue.3 , pp. 205-209
    • Sinha, R.K.1    Aggarwal, Y.2    Das, B.N.3
  • 17
    • 24144435990 scopus 로고    scopus 로고
    • Diagnosing aortic valve stenosis by parameter extraction of heart sound signals
    • DOI 10.1007/s10439-005-5347-x
    • Voss, A., Mix, A., and Huebner, T., Diagnosing aortic valve stenosis by parameter extraction of heart sound signals. Ann Biomed Eng 33:1167-1174, 2005. (Pubitemid 41240011)
    • (2005) Annals of Biomedical Engineering , vol.33 , Issue.9 , pp. 1167-1174
    • Voss, A.1    Mix, A.2    Hubner, T.3
  • 18
    • 13144296645 scopus 로고    scopus 로고
    • A decision tree-based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds
    • June 3
    • Pavlopoulos, S., Stasis, A., Loukis, E., A decision tree-based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. BioMed Eng OnLine (June 3) 1-5, 2004, Available at: http://www.biomedical-engineering-online. com/content/3/1/21.
    • (2004) BioMed Eng OnLine , pp. 1-5
    • Pavlopoulos, S.1    Stasis, A.2    Loukis, E.3
  • 19
    • 0027513960 scopus 로고
    • Applications of neural networks in structure-activity relationships of a small number of molecules
    • Tetko, I. V., Luik, A. I., and Poda, G. I., Applications of neural networks in structure-activity relationships of a small number of molecules. J Med Chem 36(7):811-814, 1993. (Pubitemid 23118772)
    • (1993) Journal of Medicinal Chemistry , vol.36 , Issue.7 , pp. 811-814
    • Tetko, I.V.1    Luik, A.I.2    Poda, G.I.3
  • 22
    • 41549102581 scopus 로고    scopus 로고
    • Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques
    • Faust, O., Acharya, R. U., Allen, A. R., and Lin, C. M., Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 29(1):44-52, 2008.
    • (2008) IRBM , vol.29 , Issue.1 , pp. 44-52
    • Faust, O.1    Acharya, R.U.2    Allen, A.R.3    Lin, C.M.4
  • 25
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H., A new look at the statistical model identification. IEEE Trans Autom Control 19:716-723, 1974.
    • (1974) IEEE Trans Autom Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 26
    • 0037233261 scopus 로고    scopus 로고
    • Classification of heart sounds using an artificial neural network
    • DOI 10.1016/S0167-8655(02)00281-7, PII S0167865502002817
    • Ölmez, T., and Dokur, Z., Classification of heart sound using an artificial neural network. Pattern Recogn Lett 24:617-629, 2003. (Pubitemid 36080800)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 617-629
    • Olmez, T.1    Dokur, Z.2
  • 28
    • 0003413187 scopus 로고
    • Macmillan College Publishing Company Inc., New York, 417 p.
    • Haykin, S., Neural Networks. A Comprehensive Foundation. Macmillan College Publishing Company Inc., New York, 1-60 p., 417 p., 1994.
    • (1994) Neural Networks. A Comprehensive Foundation , pp. 1-60
    • Haykin, S.1
  • 29
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural Networks: Fundementals, computing, design and application
    • Basheer, I. A., and Hajmeer, M., Artificial neural Networks: Fundementals, computing, design and application. J Microbiol Methods 43:3-31, 2000.
    • (2000) J Microbiol Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 30
    • 34447620283 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis
    • DOI 10.1016/j.talanta.2007.02.030, PII S0039914007001713
    • Zhang, Y. X., Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 73:68-75, 2007. (Pubitemid 47088653)
    • (2007) Talanta , vol.73 , Issue.1 , pp. 68-75
    • Zhang, Y.X.1
  • 31
    • 0042198967 scopus 로고    scopus 로고
    • Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition
    • DOI 10.1016/S0031-3203(03)00044-X
    • Wang, X., and Paliwal, K. K., Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recogn 36:2429-2439, 2003. (Pubitemid 36947223)
    • (2003) Pattern Recognition , vol.36 , Issue.10 , pp. 2429-2439
    • Wang, X.1    Paliwal, K.K.2
  • 33
    • 0033794194 scopus 로고    scopus 로고
    • Application of periodogram and AR spectral analysis to EEG signals
    • Akin, M., and Kiymik, M. K., Application of periodogram and AR spectral analysis to EEG signals. J Med Syst 24(4):247-256, 2000.
    • (2000) J Med Syst , vol.24 , Issue.4 , pp. 247-256
    • Akin, M.1    Kiymik, M.K.2
  • 34
    • 0027232319 scopus 로고
    • The parsimony principle applied to multivariate calibration
    • DOI 10.1016/0003-2670(93)80430-S
    • Seasholtz, M. B., and Kowalski, B., The parsimony principle applied to multivariate calibration. Anal Chim Acta 277:165-177, 1993. (Pubitemid 23157995)
    • (1993) Analytica Chimica Acta , vol.277 , Issue.2 , pp. 165-177
    • Seasholtz, M.B.1    Kowalski, B.2
  • 35
    • 0029487651 scopus 로고
    • Selection of components in principal component analysis: A comparison of methods
    • Ferr, L., Selection of components in principal component analysis: a comparison of methods. Computat Stat Data Anal 19:669-682, 1995.
    • (1995) Computat Stat Data Anal , vol.19 , pp. 669-682
    • Ferr, L.1
  • 36
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Valle, S., Li, W., and Qin, S. J., Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods. Ind Eng Chem Res 38:4389-4401, 1999.
    • (1999) Ind Eng Chem Res , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 38
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: A comparative evaluation and a novel proposition for fusion
    • Warne, K., Prasad, G., Rezvani, S., and Maguire, L., Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion. Eng Appl Artif Intell 17:871-885, 2004.
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 39
    • 0025756235 scopus 로고
    • Signal detectabilty: The use of ROC curves and their analysis
    • Centor, R. M., Signal detectabilty: The use of ROC curves and their analysis. Med Decis Making 11:102-106, 1991.
    • (1991) Med Decis Making , vol.11 , pp. 102-106
    • Centor, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.