-
1
-
-
2342578217
-
A tower with non-galois steps which attains the drinfeld- vľaduţbound
-
A. Garcia and J. Bezerra, "A tower with non-Galois steps which attains the Drinfeld-Vľaduţbound," J. Number Theory, vol. 106, no. 1, pp. 142-154, 2004.
-
(2004)
J. Number Theory
, vol.106
, Issue.1
, pp. 142-154
-
-
Garcia, A.1
Bezerra, J.2
-
2
-
-
0003092390
-
A tower of artin-schreier extensions of function fields attaining the drinfeld-vľaduţbound
-
A. Garcia and H. Stichtenoth, "A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vľaduţbound," Invent. Math., vol. 121, pp. 211-222, 1995.
-
(1995)
Invent. Math.
, vol.121
, pp. 211-222
-
-
Garcia, A.1
Stichtenoth, H.2
-
3
-
-
0037277594
-
On tame towers over finite fields
-
A. Garcia and H. Stichtenoth, "On tame towers over finite fields," J. Reine Angew. Math., vol. 557, pp. 53-80, 2003.
-
(2003)
J. Reine Angew. Math.
, vol.557
, pp. 53-80
-
-
Garcia, A.1
Stichtenoth, H.2
-
5
-
-
53649084322
-
On the qth power algorithm
-
X. Hu and H. Maharaj, "On the qth power algorithm," Finite Fields Appl., vol. 14, pp. 1068-1082, 2008.
-
(2008)
Finite Fields Appl.
, vol.14
, pp. 1068-1082
-
-
Hu, X.1
Maharaj, H.2
-
6
-
-
84958525795
-
New optimal tame towers of function fields over small finite fields
-
New York: Springer-Verlag
-
W.-C. W. Li, H. Maharaj, H. Stichtenoth, and N. D. Elkies, "New optimal tame towers of function fields over small finite fields," in Algorithmic Number Theory, ser. Lecture Notes in Computer Science. New York: Springer-Verlag, 2002, vol. 2369, pp. 372-389.
-
(2002)
Algorithmic Number Theory, ser. Lecture Notes in Computer Science
, vol.2369
, pp. 372-389
-
-
W. Li, W.-C.1
Maharaj, H.2
Stichtenoth, H.3
Elkies, N.D.4
-
7
-
-
4544274838
-
Code construction on fiber products of kummer curves
-
Sep.
-
H. Maharaj, "Code construction on fiber products of Kummer curves," IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2169-2173, Sep. 2004.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.9
, pp. 2169-2173
-
-
Maharaj, H.1
-
8
-
-
13444280302
-
Explicit constructions of algebraic-geometric codes
-
Feb.
-
H. Maharaj, "Explicit constructions of algebraic-geometric codes," IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 714-722, Feb. 2005.
-
(2005)
IEEE Trans. Inf. Theory
, vol.51
, Issue.2
, pp. 714-722
-
-
Maharaj, H.1
-
9
-
-
0001676170
-
Weierstrass semigroups in an asymptotically good tower of function fields
-
R. Pellikaan, H. Stichtenoth, and F. Torres, "Weierstrass semigroups in an asymptotically good tower of function fields," Finite Fields Appl., vol. 4, pp. 381-392, 1998.
-
(1998)
Finite Fields Appl.
, vol.4
, pp. 381-392
-
-
Pellikaan, R.1
Stichtenoth, H.2
Torres, F.3
-
10
-
-
0035442521
-
A low complexity algorithm for the construction of algebraic-geometric codes better than the gilbert-varshamov bound
-
Sep.
-
W. K. Shum, I. Aleshnikov, P. V. Kumar, H. Stichtenoth, and V. Deolalikar, "A low complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound," IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2225-2241, Sep. 2001.
-
(2001)
IEEE Trans. Inf. Theory
, vol.47
, Issue.6
, pp. 2225-2241
-
-
Shum, W.K.1
Aleshnikov, I.2
Kumar, P.V.3
Stichtenoth, H.4
Deolalikar, V.5
-
13
-
-
33846685233
-
Number of points of an algebraic curve
-
S. G. Vľaduţand V. G. Drinfeld, "Number of points of an algebraic curve," Funct. Anal. Appl., vol. 17, pp. 53-54, 1983.
-
(1983)
Funct. Anal. Appl.
, vol.17
, pp. 53-54
-
-
Vľaduţ, S.G.1
Drinfeld, V.G.2
-
14
-
-
0030788829
-
An explicit construction of a sequence of codes attaining the tsfasman-vľaduţ-zink bound. The first steps
-
Jan.
-
C. C. Voss and T. Høholdt, "An explicit construction of a sequence of codes attaining the Tsfasman-Vľaduţ-Zink bound. The first steps," IEEE Trans. Inf. Theory, vol. 43, no. 1, pp. 128-135, Jan. 1997.
-
(1997)
IEEE Trans. Inf. Theory
, vol.43
, Issue.1
, pp. 128-135
-
-
Voss, C.C.1
Høholdt, T.2
|