메뉴 건너뛰기




Volumn 7224 LNCS, Issue , 2012, Pages 376-387

Classification of short texts by deploying topical annotations

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ALGORITHM; CONCEPT DRIFTS; LATENT SEMANTIC ANALYSIS; NEW DIMENSIONS; QUERY TIME; WIKIPEDIA;

EID: 84860206957     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-28997-2_32     Document Type: Conference Paper
Times cited : (77)

References (20)
  • 4
    • 78651341459 scopus 로고    scopus 로고
    • TAGME: On-the-fly annotation of short text fragments (by Wikipedia entities)
    • Ferragina, P., Scaiella, U.: TAGME: On-the-fly annotation of short text fragments (by Wikipedia entities). In: ACM CIKM, pp. 1625-1628 (2010)
    • (2010) ACM CIKM , pp. 1625-1628
    • Ferragina, P.1    Scaiella, U.2
  • 5
    • 84880747531 scopus 로고    scopus 로고
    • Feature generation for text categorization using world knowledge
    • Gabrilovich, E., Markovitch, S.: Feature generation for text categorization using world knowledge. In: Int. Joint Conference on A.I, pp. 1048-1053 (2005)
    • (2005) Int. Joint Conference on A.I , pp. 1048-1053
    • Gabrilovich, E.1    Markovitch, S.2
  • 6
    • 65349111942 scopus 로고    scopus 로고
    • Wikipedia-based semantic interpretation for natural language processing
    • Gabrilovich, E., Markovitch, S.: Wikipedia-based Semantic Interpretation for Natural Language Processing. J. Artif. Intell. Res. 34, 443-498 (2009)
    • (2009) J. Artif. Intell. Res. , vol.34 , pp. 443-498
    • Gabrilovich, E.1    Markovitch, S.2
  • 7
    • 79960319229 scopus 로고    scopus 로고
    • Discovering context: Classifying tweets through a semantic transform based on wikipedia
    • Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011 Springer, Heidelberg
    • Genc, Y., Sakamoto, Y., Nickerson, J.V.: Discovering Context: Classifying Tweets through a Semantic Transform Based on Wikipedia. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 484-492. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6780 , pp. 484-492
    • Genc, Y.1    Sakamoto, Y.2    Nickerson, J.V.3
  • 9
    • 70350681193 scopus 로고    scopus 로고
    • Collective annotation of Wikipedia entities in web text
    • Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation of Wikipedia entities in web text. In: ACM KDD, pp. 457-466 (2009)
    • (2009) ACM KDD , pp. 457-466
    • Kulkarni, S.1    Singh, A.2    Ramakrishnan, G.3    Chakrabarti, S.4
  • 12
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hiddent topics from large-scale data collections
    • Phan, X.H., Nguyen, L.M., Houriguchi, S.: Learning to Classify Short and Sparse Text & Web with Hiddent Topics from Large-scale Data Collections. In: WWW, pp. 91-100 (2008)
    • (2008) WWW , pp. 91-100
    • Phan, X.H.1    Nguyen, L.M.2    Houriguchi, S.3
  • 13
    • 34250638291 scopus 로고    scopus 로고
    • A web-based kernel function for measuring the similarity of short text snippets
    • DOI 10.1145/1135777.1135834, Proceedings of the 15th International Conference on World Wide Web
    • Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short text snippets. In: WWW, pp. 377-386 (2006) (Pubitemid 46946630)
    • (2006) Proceedings of the 15th International Conference on World Wide Web , pp. 377-386
    • Sahami, M.1    Heilman, T.D.2
  • 14
    • 85018095293 scopus 로고
    • Beyond incremental processing: Tracking concept drift
    • Schlimmer, J.C., Graner, R.H.: Beyond Incremental Processing: Tracking Concept Drift. In: AAAI, pp. 502-507 (1986)
    • (1986) AAAI , pp. 502-507
    • Schlimmer, J.C.1    Graner, R.H.2
  • 15
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1-47 (2002)
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 16
    • 77956025040 scopus 로고    scopus 로고
    • Short text classification in twitter to improve information filtering
    • Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: ACM SIGIR, pp. 841-842 (2010)
    • (2010) ACM SIGIR , pp. 841-842
    • Sriram, B.1    Fuhry, D.2    Demir, E.3    Ferhatosmanoglu, H.4    Demirbas, M.5
  • 17
    • 33750738051 scopus 로고    scopus 로고
    • WikiRelate! Computing semantic relatedness using wikipedia
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • Strube, M., Ponzetto, S.P.: WikiRelate! Computing Semantic Relatedness Using Wikipedia. In: AAAI, pp. 1419-1424 (2006) (Pubitemid 44705473)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 1419-1424
    • Strube, M.1    Ponzetto, S.P.2
  • 18
    • 80052123411 scopus 로고    scopus 로고
    • Towards effective short text deep classification
    • Sun, X., Haofen, W., Yong, Y.: Towards effective short text deep classification. In: ACM SIGIR, pp. 1143-1144 (2011)
    • (2011) ACM SIGIR , pp. 1143-1144
    • Sun, X.1    Haofen, W.2    Yong, Y.3
  • 19
    • 0010253845 scopus 로고    scopus 로고
    • Improving short-text classification using unlabeled data for classification problems
    • Zelikovitz, S., Hirsh, H.: Improving short-text classification using unlabeled data for classification problems. In: ICML, pp. 1191-1198 (2000)
    • (2000) ICML , pp. 1191-1198
    • Zelikovitz, S.1    Hirsh, H.2
  • 20
    • 17044410110 scopus 로고    scopus 로고
    • Transductive learning for short-text classification problems using latent semantic indexing
    • Zelikovitz, S., Marquez, F.: Transductive Learning for Short-Text Classification problems using Latent Semantic Indexing. IJPRAI 19(2), 146-163 (2005)
    • (2005) IJPRAI , vol.19 , Issue.2 , pp. 146-163
    • Zelikovitz, S.1    Marquez, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.