-
5
-
-
0029321505
-
Synthesis and characterization of carbide nanorods
-
Dai H., Wang E.W., Lu Y.Z., Fan S.S., Lieber C.M. Synthesis and characterization of carbide nanorods. Nature (London) 1995, 375:769-772.
-
(1995)
Nature (London)
, vol.375
, pp. 769-772
-
-
Dai, H.1
Wang, E.W.2
Lu, Y.Z.3
Fan, S.S.4
Lieber, C.M.5
-
6
-
-
0030287840
-
Carbothermal synthesis of TiC whiskers via a vapor-liquid-solid growth mechanism
-
Ahlen N., Johnsson M., Nygren M. Carbothermal synthesis of TiC whiskers via a vapor-liquid-solid growth mechanism. J. Am. Ceram. Soc. 1996, 79:2803-2808.
-
(1996)
J. Am. Ceram. Soc.
, vol.79
, pp. 2803-2808
-
-
Ahlen, N.1
Johnsson, M.2
Nygren, M.3
-
7
-
-
0033097016
-
Using carbon nanotubes for the synthesis of transition metal carbide nanoparticles
-
Fukunaga A., Chu S., McHenry M.E. Using carbon nanotubes for the synthesis of transition metal carbide nanoparticles. J. Mater. Sci. Lett. 1999, 18:431-433.
-
(1999)
J. Mater. Sci. Lett.
, vol.18
, pp. 431-433
-
-
Fukunaga, A.1
Chu, S.2
McHenry, M.E.3
-
8
-
-
0034507427
-
Growth and characterization of TiC nanorods activated by nickel nanoparticles
-
Liang C.H., Meng G.W., Chen W., Wang Y.W., Zhang L.D. Growth and characterization of TiC nanorods activated by nickel nanoparticles. J. Cryst. Growth 2000, 220:296-300.
-
(2000)
J. Cryst. Growth
, vol.220
, pp. 296-300
-
-
Liang, C.H.1
Meng, G.W.2
Chen, W.3
Wang, Y.W.4
Zhang, L.D.5
-
9
-
-
0034325684
-
Synthesis of titanium carbide nanowires
-
Qi S.R., Huang X.T., Gan Z.W., Ding X.X., Cheng Y. Synthesis of titanium carbide nanowires. J. Cryst. Growth 2000, 219:485-488.
-
(2000)
J. Cryst. Growth
, vol.219
, pp. 485-488
-
-
Qi, S.R.1
Huang, X.T.2
Gan, Z.W.3
Ding, X.X.4
Cheng, Y.5
-
10
-
-
2042439073
-
Formation of nanocrystalline TiC by a low-temperature route
-
Shi L., Gu Y., Chen L., Yang Z., Ma J., Qian Y. Formation of nanocrystalline TiC by a low-temperature route. Chem. Lett. 2004, 33:56-57.
-
(2004)
Chem. Lett.
, vol.33
, pp. 56-57
-
-
Shi, L.1
Gu, Y.2
Chen, L.3
Yang, Z.4
Ma, J.5
Qian, Y.6
-
11
-
-
34248144324
-
Titanium nanocarbides: synthesis and modeling
-
Ivanovskii A.L. Titanium nanocarbides: synthesis and modeling. Theor. Exp. Chem. 2007, 43:1-27.
-
(2007)
Theor. Exp. Chem.
, vol.43
, pp. 1-27
-
-
Ivanovskii, A.L.1
-
12
-
-
70450277185
-
Synthesis and morphological analysis of titanium carbide nanopowder
-
Sarkar D., Chu M., Cho S.J., Kim Y.I., Basu B. Synthesis and morphological analysis of titanium carbide nanopowder. J. Am. Ceram. Soc. 2009, 92:2877-2882.
-
(2009)
J. Am. Ceram. Soc.
, vol.92
, pp. 2877-2882
-
-
Sarkar, D.1
Chu, M.2
Cho, S.J.3
Kim, Y.I.4
Basu, B.5
-
13
-
-
75749156247
-
Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron
-
Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron. ACS Nano 2010, 4:49-54.
-
(2010)
ACS Nano
, vol.4
, pp. 49-54
-
-
Grove, D.E.1
Gupta, U.2
Castleman, A.W.3
-
14
-
-
79955024807
-
Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature
-
Dikici B., Gavgali M., Bedir F. Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature. J. Compos. Mater. 2011, 45:895-900.
-
(2011)
J. Compos. Mater.
, vol.45
, pp. 895-900
-
-
Dikici, B.1
Gavgali, M.2
Bedir, F.3
-
15
-
-
79959998398
-
1-xC) nanowires
-
1-xC) nanowires. J. Mater. Chem. 2011, 21:9095-9102.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 9095-9102
-
-
Tao, X.1
Li, Y.2
Du, J.3
Xia, Y.4
Yang, Y.5
Huang, H.6
Gan, Y.7
Zhang, W.8
Li, X.9
-
16
-
-
80053546768
-
TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties
-
Tao X., Du J., Yang Y., Li Y., Xia Y., Gan Y., Huang H., Zhang W., Li X. TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties. Cryst. Growth Des. 2011, 11:4422-4426.
-
(2011)
Cryst. Growth Des.
, vol.11
, pp. 4422-4426
-
-
Tao, X.1
Du, J.2
Yang, Y.3
Li, Y.4
Xia, Y.5
Gan, Y.6
Huang, H.7
Zhang, W.8
Li, X.9
-
17
-
-
27744568669
-
Structural and electronic properties of the TiC nanotubes: density functional-based tight binding calculations
-
Enyashin A.N., Ivanovskii A.L. Structural and electronic properties of the TiC nanotubes: density functional-based tight binding calculations. Physica E 2005, 30:164-168.
-
(2005)
Physica E
, vol.30
, pp. 164-168
-
-
Enyashin, A.N.1
Ivanovskii, A.L.2
-
20
-
-
80054689002
-
2
-
2. Adv. Mater. 2011, 23:4248-4253.
-
(2011)
Adv. Mater.
, vol.23
, pp. 4248-4253
-
-
Naguib, M.1
Kurtoglu, M.2
Presser, V.3
Lu, J.4
Niu, J.5
Heon, M.6
Hultman, L.7
Gogotsi, Y.8
Barsoum, M.W.9
-
21
-
-
0034512636
-
n phases: a new class of solids; thermodynamically stable nanolaminates
-
n phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28:201-281.
-
(2000)
Prog. Solid State Chem.
, vol.28
, pp. 201-281
-
-
Barsoum, M.W.1
-
23
-
-
67650957726
-
Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides
-
Wang J., Zhou Y. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 2009, 39:415-443.
-
(2009)
Annu. Rev. Mater. Res.
, vol.39
, pp. 415-443
-
-
Wang, J.1
Zhou, Y.2
-
26
-
-
79955614513
-
Progress in research and development on MAX phases: a family of layered ternary compounds
-
Sun Z.M. Progress in research and development on MAX phases: a family of layered ternary compounds. Intern. Mater. Rev. 2011, 56:143-166.
-
(2011)
Intern. Mater. Rev.
, vol.56
, pp. 143-166
-
-
Sun, Z.M.1
-
29
-
-
0034339289
-
A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology
-
Frauenheim T., Seifert G., Elstner M., Hajnal Z., Jungnickel G., Porezag D., Suhai S., Scholz R. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Stat. Sol. B 2000, 217:41-62.
-
(2000)
Phys. Stat. Sol. B
, vol.217
, pp. 41-62
-
-
Frauenheim, T.1
Seifert, G.2
Elstner, M.3
Hajnal, Z.4
Jungnickel, G.5
Porezag, D.6
Suhai, S.7
Scholz, R.8
-
30
-
-
34547468975
-
Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme
-
Seifert G. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme. J. Phys. Chem. A 2007, 111:5609-5613.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 5609-5613
-
-
Seifert, G.1
-
31
-
-
71549128331
-
Density-functional based tight-binding: an approximate DFT method
-
Oliveira A.F., Seifert G., Heine T., Duarte H.A. Density-functional based tight-binding: an approximate DFT method. J. Braz. Chem. Soc. 2009, 20:1193-1205.
-
(2009)
J. Braz. Chem. Soc.
, vol.20
, pp. 1193-1205
-
-
Oliveira, A.F.1
Seifert, G.2
Heine, T.3
Duarte, H.A.4
-
33
-
-
77953994071
-
Adsorption of nucleotides on the rutile (110) surface
-
Gemming S., Enyashin A.N., Frenzel J., Seifert G. Adsorption of nucleotides on the rutile (110) surface. Inter. J. Mater. Res. 2010, 101:758-764.
-
(2010)
Inter. J. Mater. Res.
, vol.101
, pp. 758-764
-
-
Gemming, S.1
Enyashin, A.N.2
Frenzel, J.3
Seifert, G.4
-
34
-
-
73849129830
-
2n+1 (n=2, 3, and 4): structural and electronic properties
-
2n+1 (n=2, 3, and 4): structural and electronic properties. J. Phys. Chem. C 2009, 113:20837-20840.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 20837-20840
-
-
Enyashin, A.N.1
Ivanovskii, A.L.2
-
35
-
-
41049083168
-
Imogolite nanotubes: stability, electronic, and mechanical properties
-
Guimarães L., Enyashin A.N., Frenzel J., Heine T., Duarte H.A., Seifert G. Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano 2007, 1:362-368.
-
(2007)
ACS Nano
, vol.1
, pp. 362-368
-
-
Guimarães, L.1
Enyashin, A.N.2
Frenzel, J.3
Heine, T.4
Duarte, H.A.5
Seifert, G.6
-
36
-
-
80054881656
-
3 nanotubes with negative strain energy predicted from first principles
-
3 nanotubes with negative strain energy predicted from first principles. J. Phys. Chem. Lett. 2011, 2:2566-2570.
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 2566-2570
-
-
Piskunov, S.1
Spohr, E.2
|