메뉴 건너뛰기




Volumn , Issue , 2010, Pages 189-198

Alleviating the sparsity problem in collaborative filtering by using an adapted distance and a graph-based method

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; FORECASTING; GRAPHIC METHODS; SIGNAL FILTERING AND PREDICTION;

EID: 84859729166     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.17     Document Type: Conference Paper
Times cited : (11)

References (15)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • June
    • Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, June 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89-115, 2004.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 4
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • January
    • Zan Huang, Hsinchun Chen, and Daniel Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 22(1):116-142, January 2004.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 6
    • 35348870573 scopus 로고    scopus 로고
    • A comparison of collaborative-filtering recommendation algorithms for e-commerce
    • IEEE
    • Zan Huang, D. Zeng, and Hsinchun Chen. A comparison of collaborative-filtering recommendation algorithms for e-commerce. Intelligent Systems, IEEE, 22(5):68-78, 2007.
    • (2007) Intelligent Systems , vol.22 , Issue.5 , pp. 68-78
    • Zan, H.1    Zeng, D.2    Chen, H.3
  • 8
    • 37149051299 scopus 로고    scopus 로고
    • Collaborative filtering based on transitive correlations between items
    • Alexandros Nanopoulos. Collaborative filtering based on transitive correlations between items. Advances in Information Retrieval, 2007.
    • (2007) Advances in Information Retrieval
    • Nanopoulos, A.1
  • 9
    • 24944592578 scopus 로고    scopus 로고
    • Alleviating the sparsity problem of collaborative filtering using trust inferences
    • P. Herrmann, editor Springer-Verlag Berlin Heidelberg
    • M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem of collaborative filtering using trust inferences. In P. Herrmann, editor, iTrust, pages 224-239. Springer-Verlag Berlin Heidelberg, 2005.
    • (2005) ITrust , pp. 224-239
    • Papagelis, M.1    Plexousakis, D.2    Kutsuras, T.3
  • 11
    • 3042788736 scopus 로고    scopus 로고
    • Application of dimensionality reduction in recommender system - A case study
    • Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Application of dimensionality reduction in recommender system - a case study. In ACM WebKDD Workshop, 2000.
    • (2000) ACM WebKDD Workshop
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Riedl, J.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.