메뉴 건너뛰기




Volumn 2, Issue 3, 2011, Pages

Latent subject-centered modeling of collaborative tagging: An application in social search

Author keywords

Collaborative tagging; Item recommendation; Social search; Subject centered modeling; Tag based recommendation

Indexed keywords

COLLABORATIVE TAGGING; EMPIRICAL EVALUATIONS; FACTORIZATION METHODS; ITEM RECOMMENDATION; KEY TECHNOLOGIES; KNOWLEDGE MANAGEMENT PLATFORM; KNOWLEDGE RESOURCE; MODEL MAPS; PERFORMANCE IMPROVEMENTS; PROBABILISTIC LATENT SEMANTIC ANALYSIS; RESOURCE RECOMMENDATION; SOCIAL BOOKMARKING; SOCIAL SEARCH; TAG-BASED; WEB 2.0;

EID: 84859729088     PISSN: 2158656X     EISSN: 21586578     Source Type: Journal    
DOI: 10.1145/2019618.2019621     Document Type: Article
Times cited : (5)

References (62)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-The-art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • Adomavicius G. And Tuzhilin A. 2005. Towards The Next Generation Of Recommender Systems: A Survey Of The State-Of-The-Art And Possible Extensions. Ieee Trans. Knowl. Data Eng. 17, 6, 734-749. (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 35348829851 scopus 로고    scopus 로고
    • Optimizing web search using social annotations
    • DOI 10.1145/1242572.1242640, 16th International World Wide Web Conference, WWW2007
    • Bao S. Xue G.,Wu X. Yu Y. Fei B. And Su Z. 2007. Optimizing Web Search Using Social Annotations. In Proceedings Of The 16Th International Conference On World Wide Web. Acm, 501-510. (Pubitemid 47582279)
    • (2007) 16th International World Wide Web Conference, WWW2007 , pp. 501-510
    • Bao, S.1    Xue, G.2    Wu, X.3    Yu, Y.4    Fei, B.5    Su, Z.6
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the emalgorithm
    • Dempster A.,Laird N. And Rubin D. 1977. Maximum Likelihood From Incomplete Data Via The Emalgorithm. J. Royal Statist. Soc. B 39, 1, 1-38.
    • (1977) J. Royal Statist. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster A.Laird, N.1    Rubin, D.2
  • 9
    • 34250002506 scopus 로고    scopus 로고
    • Guest editors introduction: Recommender systems
    • DOI 10.1109/MIS.2007.52
    • Felfernig A.,Friedrich G. And Schmidt-Thieme L. 2007. Guest Editors' Introduction: Recommender Systems. Ieee Intell. Syst. 22, 3, 18-21. (Pubitemid 46883391)
    • (2007) IEEE Intelligent Systems , vol.22 , Issue.3 , pp. 18-21
    • Felfernig, A.1    Friedrich, G.2    Schmidt-Thieme, L.3
  • 12
    • 72249110245 scopus 로고    scopus 로고
    • Predicting social-tags for cold start book recommendations. In proceedings of the 3rd
    • Acm New York
    • Givon S. And Lavrenko V. 2009. Predicting Social-Tags For Cold Start Book Recommendations. In Proceedings Of The 3Rd Acm Conference On Recommender Systems. Acm New York, 333-336.
    • (2009) Acm Conference On Recommender Systems , pp. 333-336
    • Givon, S.1    Lavrenko, V.2
  • 14
    • 33644912045 scopus 로고    scopus 로고
    • Usage patterns of collaborative tagging systems
    • DOI 10.1177/0165551506062337
    • Golder S. A. And Huberman B. A. 2006. Usage Patterns Of Collaborative Tagging Systems. J. Inf. Sci. 32, 2, 198-208. (Pubitemid 43384497)
    • (2006) Journal of Information Science , vol.32 , Issue.2 , pp. 198-208
    • Golder, S.A.1    Huberman, B.A.2
  • 19
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • Hofmann T. 2004. Latent Semantic Models For Collaborative Filtering. Acm Trans. Inf. Syst. 22, 1, 89-115.
    • (2004) Acm Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 21
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Huang Z. Chen H. And Zeng D. 2004A. Applying Associative Retrieval Techniques To Alleviate The Sparsity Problem In Collaborative Filtering. Acm Trans. Inf. Syst. 22, 1, 116-142.
    • (2004) Acm Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 22
    • 0842321879 scopus 로고    scopus 로고
    • A graph model for e-commerce recommender systems
    • Huang Z. Chung W. And Chen H. 2004B. A Graph Model For E-Commerce Recommender Systems. J. Amer. Soc. Inf. Sci. Technol. 55, 3, 259-274.
    • (2004) J. Amer. Soc. Inf. Sci. Technol. , vol.55 , Issue.3 , pp. 259-274
    • Huang, Z.1    Chung, W.2    Chen, H.3
  • 23
    • 84860635279 scopus 로고    scopus 로고
    • Why does collaborative filtering work?-transaction-based recommendation model validation and selection by analyzing random bipartite graphs
    • Huang Z. And Zeng D. 2010. Why Does Collaborative Filtering Work?-Transaction-Based Recommendation Model Validation And Selection By Analyzing Random Bipartite Graphs. Informs J. Comput.
    • (2010) Informs J. Comput.
    • Huang, Z.1    Zeng, D.2
  • 26
    • 33744797084 scopus 로고    scopus 로고
    • A study of mixture models for collaborative filtering
    • DOI 10.1007/s10791-006-4651-1
    • Jin R. Si L. And Zhai C. 2006. A Study Of Mixture Models For Collaborative Filtering. Inf. Retr. 9, 3, 357-382. (Pubitemid 43839180)
    • (2006) Information Retrieval , vol.9 , Issue.3 , pp. 357-382
    • Jin, R.1    Si, L.2    Zhai, C.3
  • 27
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda T. G. And Bader B. W. 2009. Tensor Decompositions And Applications. Siam Rev. 51, 3, 455-500.
    • (2009) Siam Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 28
    • 3042701774 scopus 로고    scopus 로고
    • Introduction to recommender systems: Algorithms and evaluation
    • Konstan J. A. 2004. Introduction To Recommender Systems: Algorithms And Evaluation. Acm Trans. Inf. Syst. 22, 1, 1-4.
    • (2004) Acm Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 1-4
    • Konstan, J.A.1
  • 29
    • 85008044987 scopus 로고    scopus 로고
    • Matrix facorization techniques for recommender systems
    • Koren Y. Bell R. And Volinsky C. 2009. Matrix Facorization Techniques For Recommender Systems. Ieee Comput. 42, 8, 30-37.
    • (2009) Ieee Comput. , vol.8-42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 30
    • 84860602277 scopus 로고    scopus 로고
    • The halo effect in multi-component ratings and its implications for recommender systems: The case of yahoo movies
    • To Appear
    • Krishnan R. Callan J. Sahoo N. And Duncan G. 2011. The Halo Effect In Multi-Component Ratings And Its Implications For Recommender Systems: The Case Of Yahoo Movies. Inf. Syst. Res. To Appear.
    • (2011) Inf. Syst. Res.
    • Krishnan, R.1    Callan, J.2    Sahoo, N.3    Duncan, G.4
  • 33
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D. D. And Seung H. S. 1999. Learning The Parts Of Objects By Non-Negative Matrix Factorization. Nature 401, 6755, 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 37
    • 33847199383 scopus 로고    scopus 로고
    • Ontologies are us: A unified model of social networks and semantics
    • Mika P. 2007. Ontologies Are Us: A Unified Model Of Social Networks And Semantics. Web Semant. 5, 1, 5-15.
    • (2007) Web Semant. , vol.5 , Issue.1 , pp. 5-15
    • Mika, P.1
  • 49
    • 79951867458 scopus 로고    scopus 로고
    • Automatic tag recommendation algorithms for social recommender systems
    • 31
    • Song Y. Zhang L. And Giles C. L. 2011. Automatic Tag Recommendation Algorithms For Social Recommender Systems. Acm Trans. Web 5, 1, 4:1-4:31.
    • (2011) Acm Trans. Web , vol.5 , Issue.1-4 , pp. 1-4
    • Song, Y.1    Zhang, L.2    Giles, C.L.3
  • 50
    • 75449115027 scopus 로고    scopus 로고
    • A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis
    • Symeonidis P.,Nanopoulos A. And Manolopoulos Y. 2010. A Unified Framework For Providing Recommendations In Social Tagging Systems Based On Ternary Semantic Analysis. Ieee Trans. Knowl. Data Engin. 22, 2, 179-192.
    • (2010) Ieee Trans. Knowl. Data Engin. , vol.22 , Issue.2 , pp. 179-192
    • Symeonidis, P.1    Nanopoulos, A.2    Manolopoulos, Y.3
  • 51
    • 61549084995 scopus 로고    scopus 로고
    • Studying social tagging and folksonomy: A review and framework
    • Trant J. 2009. Studying Social Tagging And Folksonomy: A Review And Framework. J. Digital Inf. 10, 1.
    • (2009) J. Digital Inf. , vol.10 , pp. 1
    • Trant, J.1
  • 54
    • 33845447532 scopus 로고    scopus 로고
    • Exploring social annotations for the semantic web
    • DOI 10.1145/1135777.1135839, Proceedings of the 15th International Conference on World Wide Web
    • Wu X. Zhang L. And Yu Y. 2006. Exploring Social Annotations For The Semantic Web. In Proceedings Of The 15Th International Conference On The World Wide Web. Acm, 417-426. (Pubitemid 46946634)
    • (2006) Proceedings of the 15th International Conference on World Wide Web , pp. 417-426
    • Wu, X.1    Zhang, L.2    Yu, Y.3
  • 59
    • 70349443377 scopus 로고    scopus 로고
    • Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs
    • Zhang Z.-K. Zhou T. And Zhang Y.-C. 2010. Personalized Recommendation Via Integrated Diffusion On User-Item-Tag Tripartite Graphs. Physica A: Statist. Mechan. Appl. 389, 1, 179-186.
    • (2010) Physica A: Statist. Mechan. Appl. , vol.389 , Issue.1 , pp. 179-186
    • Zhang, Z.-K.1    Zhou, T.2    Zhang, Y.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.