메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 122-127

The Conway-Maxwell-Poisson model for analyzing crash data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84859718674     PISSN: 15241904     EISSN: 15264025     Source Type: Journal    
DOI: 10.1002/asmb.937     Document Type: Note
Times cited : (17)

References (32)
  • 2
    • 32644439677 scopus 로고
    • Calibration of Predictive Models for Estimating the Safety of Ramp Design Configurations
    • Lord D, Bonneson JA,. Calibration of Predictive Models for Estimating the Safety of Ramp Design Configurations. Transportation Research Record 1908; 2005: 88-95.
    • (1908) Transportation Research Record , vol.2005 , pp. 88-95
    • Lord, D.1    Bonneson, J.A.2
  • 3
    • 33747691081 scopus 로고    scopus 로고
    • Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter
    • DOI 10.1016/j.aap.2006.02.001, PII S0001457506000169
    • Lord D,. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the Estimation of the fixed dispersion parameter. Accident Analysis and Prevention 2006; 38 (4): 751-766. (Pubitemid 44269028)
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.4 , pp. 751-766
    • Lord, D.1
  • 4
    • 1842776269 scopus 로고    scopus 로고
    • World Health Organization, Geneva, (accessed on Sept. 28,2011
    • WHO. World Report on Road Traffic Injury Prevention. Eds. Peden et al. World Health Organization, Geneva, 2004. (accessed on Sept. 28,2011: http://www.who.int/violence-injury-prevention/publications/road-traffic/ world-report/en/).
    • (2004) World Report on Road Traffic Injury Prevention
    • Peden1
  • 5
    • 33746615904 scopus 로고    scopus 로고
    • National Highway Traffic Safety Administration: Washington, D.C. (accessed on Sept. 8, 2011)
    • NHTSA. Traffic Safety Facts, 2004 Data. National Highway Traffic Safety Administration: Washington, D.C., 2005. (accessed on Sept. 8, 2011: http://www-nrd.nhtsa.dot.gov/Pubs/809911.PDF).
    • (2005) Traffic Safety Facts, 2004 Data
  • 7
    • 77952089434 scopus 로고    scopus 로고
    • The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives
    • Lord D, Mannering F,. The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives. Transportation Research-Part A 2010; 44 (5): 291-305.
    • (2010) Transportation Research - Part A , vol.44 , Issue.5 , pp. 291-305
    • Lord, D.1    Mannering, F.2
  • 8
    • 31044449725 scopus 로고    scopus 로고
    • Accident prediction model for railway-highway interfaces
    • DOI 10.1016/j.aap.2005.10.004, PII S0001457505001776
    • Oh J, Washington SP, Nam D,. Accident prediction model for railway-highway interfaces. Accident Analysis and Prevention 2006; 38 (2): 346-356. (Pubitemid 43121259)
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.2 , pp. 346-356
    • Oh, J.1    Washington, S.P.2    Nam, D.3
  • 9
    • 77955889152 scopus 로고    scopus 로고
    • Extension of the Application of Conway-Maxwell-Poisson Models: Analyzing Traffic Crash Data Exhibiting Under-Dispersion
    • Lord D, Geedipally SR, Guikema S,. Extension of the Application of Conway-Maxwell-Poisson Models: Analyzing Traffic Crash Data Exhibiting Under-Dispersion. Risk Analysis 2010; 30 (8): 1268-1276.
    • (2010) Risk Analysis , vol.30 , Issue.8 , pp. 1268-1276
    • Lord, D.1    Geedipally, S.R.2    Guikema, S.3
  • 10
    • 21644480759 scopus 로고    scopus 로고
    • Overdispersed and underdispersed Poisson generalizations
    • DOI 10.1016/j.jspi.2004.04.019, PII S0378375804002289
    • del Castillo J, Pérez-Casany M,. Overdispersed and underdispersed Poisson generalizations. Journal of Statistical Planning and Inference 2005; 134: 486-500. (Pubitemid 40936096)
    • (2005) Journal of Statistical Planning and Inference , vol.134 , Issue.2 , pp. 486-500
    • Del Castillo, J.1    Perez-Casany, M.2
  • 13
    • 10444267254 scopus 로고    scopus 로고
    • Poisson, Poisson-gamma and zero inflated regression models of motor vehicle crashes: Balancing statistical fit and theory
    • Lord D, Washington SP, Ivan JN,. Poisson, Poisson-gamma and zero inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis and Prevention 2005; 37 (1): 35-46.
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.1 , pp. 35-46
    • Lord, D.1    Washington, S.P.2    Ivan, J.N.3
  • 15
  • 16
    • 84895372431 scopus 로고
    • Double exponential families and their use in generalized linear regression
    • Efron B,. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 1986; 81: 709-721.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 709-721
    • Efron, B.1
  • 17
    • 84859723583 scopus 로고    scopus 로고
    • An application of the Conway-Maxwell-Poisson generalized linear model
    • Baltimore, MD, December
    • Guikema SD, Coffelt JP,. An application of the Conway-Maxwell-Poisson generalized linear model. Society for Risk Analysis Annual Meeting, Baltimore, MD, December 2006.
    • (2006) Society for Risk Analysis Annual Meeting
    • Guikema, S.D.1    Coffelt, J.P.2
  • 18
    • 39849095134 scopus 로고    scopus 로고
    • A flexible count data regression model for risk analysis
    • DOI 10.1111/j.1539-6924.2008.01014.x
    • Guikema SD, Coffelt JP,. A flexible count data regression model for risk analysis. Risk Analysis 2008; 28 (1): 213-223. (Pubitemid 351315514)
    • (2008) Risk Analysis , vol.28 , Issue.1 , pp. 213-223
    • Guikema, S.D.1    Goffelt, J.P.2
  • 19
    • 0035476879 scopus 로고    scopus 로고
    • Identification of sites for road accident remedial work by Bayesian statistical methods: An example of uncertain inference
    • DOI 10.1016/S0965-9978(01)00037-0, PII S0965997801000370
    • Heydecker BG, Wu J,. Identification of Sites for Road Accident Remedial Work by Bayesian Statistical Methods: An Example of Uncertain Inference. Advances in Engineering Software 2001; 32: 859-869. (Pubitemid 32935157)
    • (2001) Advances in Engineering Software , vol.32 , Issue.10-11 , pp. 859-869
    • Heydecker, B.G.1    Wu, J.2
  • 20
    • 0035497764 scopus 로고    scopus 로고
    • Overdispersion in modelling accidents on road sections and in Empirical Bayes estimation
    • DOI 10.1016/S0001-4575(00)00094-4, PII S0001457500000944
    • Hauer E,. Overdispersion in modelling accidents on road sections and in Empirical Bayes estimation. Accident Analysis and Prevention 2001; 33 (6): 799-808. (Pubitemid 32798109)
    • (2001) Accident Analysis and Prevention , vol.33 , Issue.6 , pp. 799-808
    • Hauer, E.1
  • 21
    • 1842428184 scopus 로고
    • Modeling Traffic-Flow Relationships at Signalized Intersections: Dispersion Parameter, Functional Form and Bayes vs Empirical Bayes
    • Miaou S-P, Lord D,. Modeling Traffic-Flow Relationships at Signalized Intersections: Dispersion Parameter, Functional Form and Bayes vs Empirical Bayes. Transportation Research Record 1840; 2003: 31-40.
    • (1840) Transportation Research Record , vol.2003 , pp. 31-40
    • Miaou, S.-P.1    Lord, D.2
  • 22
    • 34247463824 scopus 로고    scopus 로고
    • On the nature of over-dispersion in motor vehicle crash prediction models
    • DOI 10.1016/j.aap.2006.08.002, PII S0001457506001370
    • Mitra S, Washington SP,. On the nature of over-dispersion in motor vehicle crash prediction models. Accident Analysis and Prevention 2007; 39 (3): 459-468. (Pubitemid 46659827)
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.3 , pp. 459-468
    • Mitra, S.1    Washington, S.2
  • 23
    • 76049113537 scopus 로고    scopus 로고
    • Analyzing Different Parameterizations of the Varying Dispersion Parameter as a Function of Segment Length
    • Geedipally SR, Lord D, Park B-J,. Analyzing Different Parameterizations of the Varying Dispersion Parameter as a Function of Segment Length. Transportation Research Record 2103 2009: 108-118.
    • (2009) Transportation Research Record 2103 , pp. 108-118
    • Geedipally, S.R.1    Lord, D.2    Park, B.-J.3
  • 24
    • 84855399519 scopus 로고    scopus 로고
    • Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models
    • in press
    • Geedipally SR, Lord D,. Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models. Transportation Research Record 2011, in press.
    • (2011) Transportation Research Record
    • Geedipally, S.R.1    Lord, D.2
  • 25
    • 84855304878 scopus 로고    scopus 로고
    • Characterizing the Performance of the Conway-Maxwell-Poisson Generalized Linear Model
    • DOI: 10.1111/j.1539-6924.2011.01659.x.
    • Francis RA, Geedipally SR, Guikema SD, Dhavala SS, Lord D, Larocca S,. Characterizing the Performance of the Conway-Maxwell-Poisson Generalized Linear Model. Risk Analysis 2012. DOI: 10.1111/j.1539-6924.2011.01659.x.
    • (2012) Risk Analysis
    • Francis, R.A.1    Geedipally, S.R.2    Guikema, S.D.3    Dhavala, S.S.4    Lord, D.5    Larocca, S.6
  • 26
    • 0024601101 scopus 로고
    • Estimation of the negative binomial parameter κ by maximum quasi-likelihood
    • DOI 10.2307/2532055
    • Clark SJ, Perry JN,. Estimation of the Negative Binomial Parameter κ by Maximum Quasi-Likelihood. Biometrics 1989; 45: 309-316. (Pubitemid 19109175)
    • (1989) Biometrics , vol.45 , Issue.1 , pp. 309-316
    • Clark, S.J.1    Perry, J.N.2
  • 27
    • 0025047727 scopus 로고
    • Maximum likelihood estimation for the negative binomial dispersion parameter
    • Piegorsch WW,. Maximum Likelihood Estimation for the Negative Binomial Dispersion Parameter. Biometrics 1990; 46: 863-867. (Pubitemid 20333618)
    • (1990) Biometrics , vol.46 , Issue.3 , pp. 863-867
    • Piegorsch, W.W.1
  • 28
    • 0344506348 scopus 로고
    • Modified Pseudo-Likelihood Estimator of the Overdispersion Parameter in Poisson Mixture Models
    • Dean CB,. Modified Pseudo-Likelihood Estimator of the Overdispersion Parameter in Poisson Mixture Models. Journal of Applied Statistics 1994; 21 (6): 523-532.
    • (1994) Journal of Applied Statistics , vol.21 , Issue.6 , pp. 523-532
    • Dean, C.B.1
  • 29
    • 0036628648 scopus 로고    scopus 로고
    • Generalised linear accident models and goodness of fit testing
    • DOI 10.1016/S0001-4575(01)00037-9, PII S0001457501000379
    • Wood GR,. Generalised linear accident models and goodness of fit testing. Accident Analysis and Prevention 2002; 34 (4): 417-427. (Pubitemid 34498179)
    • (2002) Accident Analysis and Prevention , vol.34 , Issue.4 , pp. 417-427
    • Wood, G.R.1
  • 30
    • 43949096566 scopus 로고    scopus 로고
    • Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poisson-gamma models for modeling motor vehicle crashes: A Bayesian perspective
    • DOI 10.1016/j.ssci.2007.03.005, PII S0925753507000355
    • Lord D, Miranda-Moreno LF,. Effects of Low Sample Mean Values and Small Sample Size on the Estimation of the Fixed Dispersion Parameter of Poisson-gamma Models for Modeling Motor Vehicle Crashes: A Bayesian Perspective. Safety Science 2008; 46 (5): 751-770. (Pubitemid 351707761)
    • (2008) Safety Science , vol.46 , Issue.5 , pp. 751-770
    • Lord, D.1    Miranda-Moreno, L.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.