메뉴 건너뛰기




Volumn 39, Issue 5, 2012, Pages 927-945

Model-based clustering of multivariate skew data with circular components and missing values

Author keywords

circular data; EM algorithm; latent classes; missing values; skew normal; unsupervised classification; von Mises; wave; wind

Indexed keywords


EID: 84859640752     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2011.626850     Document Type: Article
Times cited : (20)

References (27)
  • 1
    • 34548253400 scopus 로고    scopus 로고
    • Bayesian inference for skew-normal linear mixed models
    • Arellano-Valle, R. B., Bolfarine, H. and Lachos, V. H. 2007. Bayesian inference for skew-normal linear mixed models. J. Appl. Stat, 34: 663-682.
    • (2007) J. Appl. Stat , vol.34 , pp. 663-682
    • Arellano-Valle, R.B.1    Bolfarine, H.2    Lachos, V.H.3
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery, A. E. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49: 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 77949314497 scopus 로고    scopus 로고
    • Wind and wave predictions in the Adriatic Sea
    • Bertotti, L. and Cavalieri, L. 2009. Wind and wave predictions in the Adriatic Sea. J. Mar. Syst, 78: S227-S234.
    • (2009) J. Mar. Syst , vol.78
    • Bertotti, L.1    Cavalieri, L.2
  • 4
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G. and Govaert, G. 2000. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell, 22: 719-725.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki, C., Celeux, G. and Govaert, G. 2003. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Statist. Data Anal, 41: 561-575.
    • (2003) Comput. Statist. Data Anal , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 6
    • 0345010872 scopus 로고    scopus 로고
    • Applied Latent Class Analysis
    • In: Hagenaars J., McCutcheon A., editors Cambridge: Cambridge University Press
    • Hagenaars, J. and McCutcheon, A. 2002. "Applied Latent Class Analysis". Edited by: Hagenaars, J. and McCutcheon, A. Cambridge: Cambridge University Press.
    • (2002)
    • Hagenaars, J.1    McCutcheon, A.2
  • 7
    • 0037469115 scopus 로고    scopus 로고
    • Mixture model clustering for mixed data with missing information
    • Hunt, L. and Jorgensen, M. 2003. Mixture model clustering for mixed data with missing information. Comput. Statist. Data Anal, 41: 429-440.
    • (2003) Comput. Statist. Data Anal , vol.41 , pp. 429-440
    • Hunt, L.1    Jorgensen, M.2
  • 8
    • 78650837148 scopus 로고    scopus 로고
    • Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints
    • Ingrassia, S. and Rocci, R. 2011. Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints. Comput. Statist. Data Anal, 55: 1715-1725.
    • (2011) Comput. Statist. Data Anal , vol.55 , pp. 1715-1725
    • Ingrassia, S.1    Rocci, R.2
  • 9
    • 58149522265 scopus 로고    scopus 로고
    • Model-based clustering with non-elliptically contoured distributions
    • Karlis, D. and Santourian, A. 2009. Model-based clustering with non-elliptically contoured distributions. Stat. Comput, 19: 73-83.
    • (2009) Stat. Comput , vol.19 , pp. 73-83
    • Karlis, D.1    Santourian, A.2
  • 10
    • 49049121835 scopus 로고    scopus 로고
    • Dependent models for observations which include angular ones
    • Kato, S. and Shimizu, K. 2008. Dependent models for observations which include angular ones. J. Statist. Plann. Inference, 138: 3538-3549.
    • (2008) J. Statist. Plann. Inference , vol.138 , pp. 3538-3549
    • Kato, S.1    Shimizu, K.2
  • 11
    • 84859633920 scopus 로고    scopus 로고
    • A latent-class model for clustering incomplete linear and circular data in marine studies
    • Lagona, F. and Picone, M. 2011. A latent-class model for clustering incomplete linear and circular data in marine studies. J. Data Sci, 9: 585-605.
    • (2011) J. Data Sci , vol.9 , pp. 585-605
    • Lagona, F.1    Picone, M.2
  • 12
    • 21344440232 scopus 로고    scopus 로고
    • Mixture separation for mixed-mode data
    • Lawrence, C. J. and Krzanowski, W. J. 1996. Mixture separation for mixed-mode data. Stat. Comput, 6: 85-92.
    • (1996) Stat. Comput , vol.6 , pp. 85-92
    • Lawrence, C.J.1    Krzanowski, W.J.2
  • 13
    • 56349112368 scopus 로고    scopus 로고
    • Maximum likelihood estimation for multivariate skew normal mixture models
    • Lin, T. I. 2009. Maximum likelihood estimation for multivariate skew normal mixture models. J. Multivariate Anal, 100: 257-265.
    • (2009) J. Multivariate Anal , vol.100 , pp. 257-265
    • Lin, T.I.1
  • 14
    • 70350043774 scopus 로고    scopus 로고
    • Computationally efficient learning of multivariate t mixture models with missing information
    • Lin, T. I., Ho, H. and Shen, P. 2009. Computationally efficient learning of multivariate t mixture models with missing information. Comput. Statist, 24: 375-392.
    • (2009) Comput. Statist , vol.24 , pp. 375-392
    • Lin, T.I.1    Ho, H.2    Shen, P.3
  • 15
    • 34249737344 scopus 로고    scopus 로고
    • Robust mixture modeling using the skew t distribution
    • Lin, T., Lee, J. and Hsieh, W. 2007. Robust mixture modeling using the skew t distribution. Stat. Comput, 17: 81-92.
    • (2007) Stat. Comput , vol.17 , pp. 81-92
    • Lin, T.1    Lee, J.2    Hsieh, W.3
  • 16
    • 79956090346 scopus 로고    scopus 로고
    • Supervised learning of multivariate skew normal mixture models with missing information
    • Lin, T. C. and Lin, T. I. 2010. Supervised learning of multivariate skew normal mixture models with missing information. Comput. Statist, 25: 183-201.
    • (2010) Comput. Statist , vol.25 , pp. 183-201
    • Lin, T.C.1    Lin, T.I.2
  • 17
    • 44649142806 scopus 로고    scopus 로고
    • A multivariate von Mises distribution with applications to bioinformatics
    • Mardia, K. V., Hughes, G., Taylor, C. C. and Singh, H. 2008. A multivariate von Mises distribution with applications to bioinformatics. Canad. J. Statist, 36: 99-109.
    • (2008) Canad. J. Statist , vol.36 , pp. 99-109
    • Mardia, K.V.1    Hughes, G.2    Taylor, C.C.3    Singh, H.4
  • 18
    • 34547679634 scopus 로고    scopus 로고
    • Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data
    • Mardia, K., Taylor, C. and Subramaniam, G. 2007. Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biometrics, 63: 505-512.
    • (2007) Biometrics , vol.63 , pp. 505-512
    • Mardia, K.1    Taylor, C.2    Subramaniam, G.3
  • 19
    • 0004066260 scopus 로고    scopus 로고
    • Finite mixture models
    • New York: Wiley
    • McLachlan, G. and Peel, D. 2000. "Finite mixture models". New York: Wiley.
    • (2000)
    • McLachlan, G.1    Peel, D.2
  • 20
    • 0028633428 scopus 로고
    • A note on the bias of estimators with missing data
    • Rotnitzky, A. and Wypij, D. 1994. A note on the bias of estimators with missing data. Biometrics, 50: 1163-1170.
    • (1994) Biometrics , vol.50 , pp. 1163-1170
    • Rotnitzky, A.1    Wypij, D.2
  • 21
    • 0003738155 scopus 로고
    • Multiple Imputation for Nonresponse in Surveys
    • New York: Wiley
    • Rubin, D. 1987. "Multiple Imputation for Nonresponse in Surveys". New York: Wiley.
    • (1987)
    • Rubin, D.1
  • 22
    • 0242595939 scopus 로고    scopus 로고
    • A new class of multivariate skew distributions with applications to Bayesian regression models
    • Sahu, S. K., Dey, D. K. and Branco, M. D. 2003. A new class of multivariate skew distributions with applications to Bayesian regression models. Canad. J. Statist, 31: 129-150.
    • (2003) Canad. J. Statist , vol.31 , pp. 129-150
    • Sahu, S.K.1    Dey, D.K.2    Branco, M.D.3
  • 23
    • 0003398574 scopus 로고    scopus 로고
    • Analysis of Incomplete Multivariate Data
    • London: Chapman and Hall
    • Shafer, J. L. 1997. "Analysis of Incomplete Multivariate Data". London: Chapman and Hall.
    • (1997)
    • Shafer, J.L.1
  • 24
    • 0013138158 scopus 로고    scopus 로고
    • Probabilistic model for two dependent circular variables
    • Singh, H., Hnizdo, V. and Demchuk, E. 2002. Probabilistic model for two dependent circular variables. Biometrika, 89(3): 719-723.
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 719-723
    • Singh, H.1    Hnizdo, V.2    Demchuk, E.3
  • 25
    • 0000069552 scopus 로고
    • Identifiability of mixtures of product measures
    • Teicher, H. 1967. Identifiability of mixtures of product measures. Ann. Math. Statist, 38: 1300-1302.
    • (1967) Ann. Math. Statist , vol.38 , pp. 1300-1302
    • Teicher, H.1
  • 26
    • 0000411615 scopus 로고
    • On the identifiability of finite mixtures
    • Yakowitz, S. and Spragins, J. 1968. On the identifiability of finite mixtures. Ann. Math. Statist, 39: 209-214.
    • (1968) Ann. Math. Statist , vol.39 , pp. 209-214
    • Yakowitz, S.1    Spragins, J.2
  • 27
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F.J. 1983. On the convergence properties of the EM algorithm. Ann. Statist, 11: 95-103.
    • (1983) Ann. Statist , vol.11 , pp. 95-103
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.