메뉴 건너뛰기




Volumn 112, Issue 5, 2012, Pages 933-

Reply to Bonomi and Plasqui

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84859573211     PISSN: 87507587     EISSN: 15221601     Source Type: Journal    
DOI: 10.1152/japplphysiol.01546.2011     Document Type: Letter
Times cited : (2)

References (6)
  • 2
    • 84859590080 scopus 로고    scopus 로고
    • "Divide and conquer": Assessing energy expenditure following physical activity type classification
    • doi: 10.1152/japplphysiol.01403.2011
    • Bonomi AG, Plasqui G. "Divide and conquer": assessing energy expenditure following physical activity type classification. J Appl Physiol; doi: 10.1152/japplphysiol.01403.2011.
    • J Appl Physiol;
    • Bonomi, A.G.1    Plasqui, G.2
  • 3
    • 69749105447 scopus 로고    scopus 로고
    • Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
    • Bonomi AG, Plasqui G, Goris AH, Westerterp KR. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol 107: 655-661, 2009.
    • (2009) J Appl Physiol , vol.107 , pp. 655-661
    • Bonomi, A.G.1    Plasqui, G.2    Goris, A.H.3    Westerterp, K.R.4
  • 4
    • 33646370992 scopus 로고    scopus 로고
    • A novel method for using accelerometer data to predict energy expenditure
    • DOI 10.1152/japplphysiol.00818.2005
    • Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 100: 1324-1331, 2006. (Pubitemid 43671491)
    • (2006) Journal of Applied Physiology , vol.100 , Issue.4 , pp. 1324-1331
    • Crouter, S.E.1    Clowers, K.G.2    Bassett Jr., D.R.3
  • 5
    • 83655203046 scopus 로고    scopus 로고
    • Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample
    • Freedson PS, Lyden K, Kozey-Keadle S, Staudenmayer J. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. J Appl Physiol 111: 1804-1812, 2011.
    • (2011) J Appl Physiol , vol.111 , pp. 1804-1812
    • Freedson, P.S.1    Lyden, K.2    Kozey-Keadle, S.3    Staudenmayer, J.4
  • 6
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107: 1300-1307, 2009.
    • (2009) J Appl Physiol , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.