-
1
-
-
85084168098
-
-
2 edition, Pure and Applied Mathematics Marcel Dekker, Inc., New York
-
R. P. Agarwal, "Difference Equations and Inequalities," 2 edition, Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000.
-
(2000)
Difference Equations and Inequalities
, vol.228
-
-
Agarwal, R.P.1
-
2
-
-
0033164505
-
Exponential dichotomy and trichotomy for difference equations
-
A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations, Comput. Math. Appl., 38 (1999), 41-49.
-
(1999)
Comput. Math. Appl.
, vol.38
, pp. 41-49
-
-
Alonso, A.I.1
Hong, J.2
Obaya, R.3
-
4
-
-
8644219736
-
The dichotomy spectrum for noninvertible systems of linear difference equations
-
B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, J. Difference Equ. Appl., 7 (2001), 895-913.
-
(2001)
J. Difference Equ. Appl.
, vol.7
, pp. 895-913
-
-
Aulbach, B.1
Siegmund, S.2
-
5
-
-
84859610596
-
A spectral theory for nonautonomous difference equations
-
(Temuco, Chile 2000) (eds. J. Ĺopez-Fenner, et al.) Taylor & Francis, London
-
A spectral theory for nonautonomous difference equations, New Trends in Difference Equations (Temuco, Chile, 2000) (eds. J. Ĺopez-Fenner, et al.), Taylor & Francis, London, (2002), 45-55.
-
(2002)
New Trends in Difference Equations
, pp. 45-55
-
-
-
6
-
-
33744749876
-
A reduction principle for nonautonomous differential equations
-
B. Aulbach, A reduction principle for nonautonomous differential equations, Archiv der Mathematik, 39 (1982), 217-232.
-
(1982)
Archiv der Mathematik
, vol.39
, pp. 217-232
-
-
Aulbach, B.1
-
7
-
-
0000129973
-
The concept of spectral dichotomy for linear difference equations, II
-
B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II, J. Difference Equ. Appl., 2 (1996), 251-262.
-
(1996)
J. Difference Equ. Appl.
, vol.2
, pp. 251-262
-
-
Aulbach, B.1
Van Minh, N.2
-
8
-
-
0000082530
-
Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts
-
A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations Oper. Theory, 14 (1991), 613-677.
-
(1991)
Integral Equations Oper Theory
, vol.14
, pp. 613-677
-
-
Ben-Artzi, A.1
Gohberg, I.2
-
9
-
-
0001203181
-
Dichotomies ofperturbed time varying systems and the power method
-
Dichotomies ofperturbed time varying systems and the power method, Indiana Univ. Math. J., 42 (1993), 699-720.
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 699-720
-
-
-
10
-
-
11144255492
-
Invertibility and the Fredholmproperty ofdifference operators
-
A. G. Baskakov, Invertibility and the Fredholmproperty ofdifference operators, Mathematical Notes, 67 (2000), 690-698.
-
(2000)
Mathematical Notes
, vol.67
, pp. 690-698
-
-
Baskakov, A.G.1
-
12
-
-
84859609337
-
Dichotomies in stabilitytheory
-
Springer-Verlag, Berlin- New York
-
"Dichotomies in StabilityTheory," Lect. Notes Math., 629, Springer-Verlag, Berlin- New York, 1978.
-
(1978)
Lect. Notes Math.
, vol.629
-
-
-
13
-
-
0003254098
-
Stability of Solutions of Differential Equations in Ba- nach Space
-
American Mathematical Society, Providence, RI
-
J. L. Dalec'kiǐ and M. G. Kreǐn, "Stability of Solutions of Differential Equations in Ba- nach Space," Translations ofMathematical Monographs, 43, American Mathematical Society, Providence, RI, 1974.
-
(1974)
Translations OfMathematical Monographs
, vol.43
-
-
Dalec'kiǐ, J.L.1
Kreǐn, M.G.2
-
14
-
-
34249880487
-
Lyapunov and Sacker-Sell spectral intervals
-
L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals, J. Dyn. Differ. Equations, 19 (2007), 265-293.
-
(2007)
J. Dyn. Differ. Equations
, vol.19
, pp. 265-293
-
-
Dieci, L.1
Van Vleck, E.S.2
-
15
-
-
34548207686
-
Exponential trichotomy of differential systems
-
S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, J. Math. Anal. Appl., 129 (1988), 362-374.
-
(1988)
J. Math. Anal. Appl.
, vol.129
, pp. 362-374
-
-
Elaydi, S.1
Hajek, O.2
-
16
-
-
26844560189
-
Dichotomy and trichotomy of difference equations
-
S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations, J. Difference Equ. Appl., 3 (1998), 417-448.
-
(1998)
J. Difference Equ. Appl.
, vol.3
, pp. 417-448
-
-
Elaydi, S.1
Janglajew, K.2
-
17
-
-
0003304963
-
Geometric theory of semilinear parabolic equations
-
Springer, Berlin-New York
-
D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math., 840, Springer, Berlin-New York, 1981.
-
(1981)
Lect. Notes Math.
, vol.840
-
-
Henry, D.1
-
18
-
-
70549114661
-
Explicit ε and δ for the implicit function theorem
-
J. M. Holtzman, Explicit ε and δ for the implicit function theorem, SIAM Review, 12 (1970), 284-286.
-
(1970)
SIAM Review
, vol.12
, pp. 284-286
-
-
Holtzman, J.M.1
-
19
-
-
79251524221
-
Computing Sacker-Sell spectra in discrete time dynamical systems
-
T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems, SIAM J. Numer. Anal., 48 (2010), 2043-2064.
-
(2010)
SIAM J. Numer. Anal.
, vol.48
, pp. 2043-2064
-
-
Hüls, T.1
-
20
-
-
21144433254
-
Two-step transitions in nonautonomous bifur- cations: An explanation
-
R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifur- cations: An explanation, Stoch. Dyn., 2 (2002), 67-92.
-
(2002)
Stoch. Dyn.
, vol.2
, pp. 67-92
-
-
Johnson, R.A.1
Kloeden, P.E.2
Pavani, R.3
-
21
-
-
0003862232
-
-
Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin
-
T. Kato, "Perturbation Theory for Linear Operators," reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
-
(1995)
Perturbation Theory for Linear Operators
-
-
Kato, T.1
-
22
-
-
48549112859
-
Exponential dichotomies and transversal homoclinic points
-
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differ. Equations, 55 (1984), 225-256.
-
(1984)
J. Differ. Equations
, vol.55
, pp. 225-256
-
-
Palmer, K.J.1
-
23
-
-
84968468483
-
Exponential dichotomies for almost periodic equations
-
Exponential dichotomies for almost periodic equations, Proc. Am. Math. Soc., 101 (1987), 293-298.
-
(1987)
Proc. Am. Math. Soc.
, vol.101
, pp. 293-298
-
-
-
24
-
-
84968484465
-
Exponential dichotomies and Fredholm operators
-
Exponential dichotomies and Fredholm operators, Proc. Am. Math. Soc., 104 (1988), 149-156.
-
(1988)
Proc. Am. Math. Soc.
, vol.104
, pp. 149-156
-
-
-
25
-
-
69249175942
-
Exponential dichotomy for almost periodic linear difference equations
-
G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations, Ann. Soc. Sci. Bruxelles, Śer. I, 102 (1988), 19-28.
-
(1988)
Ann. Soc. Sci. Bruxelles, Śer. i
, vol.102
, pp. 19-28
-
-
Papaschinopoulos, G.1
-
26
-
-
0009392063
-
On exponential trichotomy of linear difference equations
-
On exponential trichotomy of linear difference equations, Appl. Anal. 40; 1991: 89-109.
-
(1991)
Appl. Anal.
, vol.40
, pp. 89-109
-
-
-
27
-
-
12244312741
-
Stability ofcenterfiber bundles for nonautonomous difference equations in
-
(eds. S. Elaydi, et al), Fields Institute Communications American Mathematical Society, Providence, RI
-
C. P̈otzsche, Stability ofcenterfiber bundles for nonautonomous difference equations, in "Difference and Differential Equations" (eds. S. Elaydi, et al), Fields Institute Communications, 42, American Mathematical Society, Providence, RI, (2004), 295-304.
-
(2004)
Difference and Differential Equations
, vol.42
, pp. 295-304
-
-
P̈otzsche, C.1
-
28
-
-
70449348302
-
A note on the dichotomy spectrum
-
A note on the dichotomy spectrum, J. Difference Equ. Appl. 15 (2009) 1021-1025.
-
(2009)
J. Difference Equ. Appl.
, vol.15
, pp. 1021-1025
-
-
-
29
-
-
77956238507
-
Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach
-
Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739-776.
-
(2010)
Discrete and Continuous Dynamical Systems (Series B)
, vol.14
, pp. 739-776
-
-
-
30
-
-
79952104625
-
Nonautonomous continuation of bounded solutions
-
Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal., 10 (2011), 937-961.
-
(2011)
Commun. Pure Appl. Anal.
, vol.10
, pp. 937-961
-
-
-
31
-
-
70549110773
-
Local approximation of invariantfiber bundles: An algorith- mic approach in
-
(eds. R. J. Sacker, et al) World Scientific, Hackensack, NJ
-
C. P̈otzsche and M. Rasmussen, Local approximation of invariantfiber bundles: An algorith- mic approach, in "Difference Equations and Discrete Dynamical Systems" (eds. R. J. Sacker, et al), World Scientific, Hackensack, NJ, 2005, 155-170.
-
(2005)
Difference Equations and Discrete Dynamical Systems
, pp. 155-170
-
-
P̈otzsche, C.1
Rasmussen, M.2
-
32
-
-
12244272462
-
Taylor approximation of invariantfiber bundles for nonautonomous difference equations
-
Taylor approximation of invariantfiber bundles for nonautonomous difference equations, Nonlin. Analysis 60 (2005) 1303-1330.
-
(2005)
Nonlin. Analysis
, vol.60
, pp. 1303-1330
-
-
-
33
-
-
33744737605
-
Taylor approximation of integral manifolds
-
Taylor approximation of integral manifolds, J. Dyn. Differ. Equations, 18 (2006), 427-460.
-
(2006)
J. Dyn. Differ. Equations
, vol.18
, pp. 427-460
-
-
-
34
-
-
0008511747
-
Dichotomy spectrum for nonautonomous differential equations
-
S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dyn. Differ. Equations, 14 (2002), 243-258.
-
(2002)
J. Dyn. Differ. Equations
, vol.14
, pp. 243-258
-
-
Siegmund, S.1
-
35
-
-
49349126301
-
A spectral theory for linear differential systems
-
R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differ. equations, 27 (1978), 320-358.
-
(1978)
J Differ. Equations
, vol.27
, pp. 320-358
-
-
Sacker, R.J.1
Sell, G.R.2
-
36
-
-
0242689013
-
Dynamics of evolutionary equations
-
Springer-Verlag, New York
-
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.
-
(2002)
Applied Mathematical Sciences
, vol.143
-
-
Sell, G.R.1
You, Y.2
|