메뉴 건너뛰기




Volumn 85, Issue 4, 2012, Pages

Frequency discontinuity and amplitude death with time-delay asymmetry

Author keywords

[No Author keywords available]

Indexed keywords

AMPLITUDE DEATH; ANALYTICAL ESTIMATES; ARBITRARY VALUES; AVOIDED CROSSINGS; COUPLING PARAMETERS; EIGENVALUES AND EIGENVECTORS; EQUAL DELAYS; EVOLUTION EQUATIONS; FREQUENCY CHANGES; INFORMATION TRANSFERS; PHASE DIFFERENCE; PHASE SYNCHRONIZATION; RELATIVE PHASE;

EID: 84859554934     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.85.046204     Document Type: Article
Times cited : (20)

References (33)
  • 3
    • 0000848908 scopus 로고
    • PTPKAV 0033-068X 10.1143/PTP.81.939
    • H. G. Schuster and P. Wagner, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.81.939 81, 939 (1989).
    • (1989) Prog. Theor. Phys. , vol.81 , pp. 939
    • Schuster, H.G.1    Wagner, P.2
  • 6
    • 0343689904 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.64.821
    • L. M. Pecora and T.L. Carroll, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.64.821 64, 821 (1990);
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 821
    • Pecora, L.M.1    Carroll, T.L.2
  • 7
    • 15744367869 scopus 로고    scopus 로고
    • L. D. Iasemidis, S. Sabesan and K. Tsakalis, PRAMCI 0304-4289 10.1007/BF02706199
    • A. Prasad, L. D. Iasemidis, S. Sabesan and K. Tsakalis, Pramana, J. Phys. PRAMCI 0304-4289 10.1007/BF02706199 64, 513 (2005).
    • (2005) Pramana, J. Phys. , vol.64 , pp. 513
    • Prasad, A.1
  • 10
    • 84859544135 scopus 로고    scopus 로고
    • Numerically, however, this limit is difficult to demonstrate.
    • Numerically, however, this limit is difficult to demonstrate.
  • 11
    • 0021835107 scopus 로고
    • On the stability of coupled chemical oscillators
    • DOI 10.1016/0167-2789(85)90182-4
    • K. Bar-Eli, Physica D PDNPDT 0167-2789 10.1016/0167-2789(85)90182-4 14, 242 (1985). (Pubitemid 15540670)
    • (1985) Physica D: Nonlinear Phenomena , vol.D14 , Issue.2 , pp. 242-252
    • Bar-Eli, K.1
  • 13
    • 34147192429 scopus 로고
    • JSTPBS 0022-4715 10.1007/BF01013676
    • R. E. Mirollo and S. H. Strogatz, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01013676 60, 245 (1990);
    • (1990) J. Stat. Phys. , vol.60 , pp. 245
    • Mirollo, R.E.1    Strogatz, S.H.2
  • 14
    • 0001130397 scopus 로고
    • PDNPDT 0167-2789 10.1016/0167-2789(90)90124-8
    • G. B. Ermentrout, Physica D PDNPDT 0167-2789 10.1016/0167-2789(90)90124-8 41, 219 (1990);
    • (1990) Physica D , vol.41 , pp. 219
    • Ermentrout, G.B.1
  • 15
    • 0032560805 scopus 로고    scopus 로고
    • Death by delay
    • DOI 10.1038/28488
    • S.H. Strogatz, Nature (London) NATUAS 0028-0836 10.1038/28488 394, 316 (1998); (Pubitemid 28373808)
    • (1998) Nature , vol.394 , Issue.6691 , pp. 316-317
    • Strogatz, S.H.1
  • 16
    • 0347963951 scopus 로고    scopus 로고
    • PDNPDT 0167-2789 10.1016/S0167-2789(99)00004-4
    • D. V. R. Reddy, A. Sen, and G. L. Johnston, Physica D PDNPDT 0167-2789 10.1016/S0167-2789(99)00004-4 129, 15 (1999).
    • (1999) Physica D , vol.129 , pp. 15
    • Reddy, D.V.R.1    Sen, A.2    Johnston, G.L.3
  • 17
    • 45149139481 scopus 로고
    • PDNPDT 0167-2789 10.1016/0167-2789(90)90007-C
    • D. G. Aronson, G. B. Ermentrout, and N. Koppel, Physica D PDNPDT 0167-2789 10.1016/0167-2789(90)90007-C 41, 403 (1990).
    • (1990) Physica D , vol.41 , pp. 403
    • Aronson, D.G.1    Ermentrout, G.B.2    Koppel, N.3
  • 20
    • 1442281279 scopus 로고    scopus 로고
    • PLEEE8 1539-3755 10.1103/PhysRevE.68.067202
    • K. Konishi, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.68.067202 68, 067202 (2003).
    • (2003) Phys. Rev. e , vol.68 , pp. 067202
    • Konishi, K.1
  • 23
    • 85126483141 scopus 로고    scopus 로고
    • PLEEE8 1539-3755 10.1103/PhysRevE.82.027201 0960-0779 CSFOEH 10.1016/j.chaos.2010.08.001
    • A. Prasad, Chaos, Solitons Fractals PLEEE8 1539-3755 10.1103/PhysRevE.82. 027201 43, 42 (2010). 0960-0779 CSFOEH 10.1016/j.chaos.2010.08.001
    • (2010) Chaos, Solitons Fractals , vol.43 , pp. 42
    • Prasad, A.1
  • 24
    • 9744234606 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.91.094101
    • F. M. Atay, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 094101 91, 094101 (2003).
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 094101
    • Atay, F.M.1
  • 25
    • 77955152393 scopus 로고    scopus 로고
    • PLEEE8 1539-3755 10.1103/PhysRevE.82.017201
    • G. Saxena, A. Prasad, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.017201 82, 017201 (2010).
    • (2010) Phys. Rev. e , vol.82 , pp. 017201
    • Saxena, G.1    Prasad, A.2    Ramaswamy, R.3
  • 29
    • 84859551169 scopus 로고    scopus 로고
    • The models, Eqs. and , are integrated using the Runge-Kutta fourth-order scheme with integration step Δt=τ/N, where discreteness N=1000 for the Landau-Stuart system and 2000 for the Rössler system. The random numbers in [0,1] are used for initial conditions in the interval [-τ,0]. Figures , and are calculated in a 100×100 grid.
    • The models, Eqs. and, are integrated using the Runge-Kutta fourth-order scheme with integration step Δ t = τ / N, where discreteness N = 1000 for the Landau-Stuart system and 2000 for the Rössler system. The random numbers in [0, 1] are used for initial conditions in the interval [- τ, 0]. Figures, and are calculated in a 100 × 100 grid.
  • 30
    • 0035277112 scopus 로고    scopus 로고
    • PLEEE8 1539-3755 10.1103/PhysRevE.63.036213
    • V. Ahlers, R. Zillmer, and A. Pikovsky, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.63.036213 63, 036213 (2001).
    • (2001) Phys. Rev. e , vol.63 , pp. 036213
    • Ahlers, V.1    Zillmer, R.2    Pikovsky, A.3
  • 31
    • 49549126801 scopus 로고
    • PYLAAG 0375-9601 10.1016/0375-9601(76)90101-8
    • O. Rössler, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(76) 90101-8 57, 397 (1976).
    • (1976) Phys. Lett. A , vol.57 , pp. 397
    • Rössler, O.1
  • 32
    • 84859544134 scopus 로고    scopus 로고
    • The largest Lyapunov exponent of uncoupled Rössler systems for the given values of parameters is approximately around 0.08.
    • The largest Lyapunov exponent of uncoupled Rössler systems for the given values of parameters is approximately around 0.08.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.