-
3
-
-
0000848908
-
-
PTPKAV 0033-068X 10.1143/PTP.81.939
-
H. G. Schuster and P. Wagner, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.81.939 81, 939 (1989).
-
(1989)
Prog. Theor. Phys.
, vol.81
, pp. 939
-
-
Schuster, H.G.1
Wagner, P.2
-
6
-
-
0343689904
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.64.821
-
L. M. Pecora and T.L. Carroll, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.64.821 64, 821 (1990);
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 821
-
-
Pecora, L.M.1
Carroll, T.L.2
-
7
-
-
15744367869
-
-
L. D. Iasemidis, S. Sabesan and K. Tsakalis, PRAMCI 0304-4289 10.1007/BF02706199
-
A. Prasad, L. D. Iasemidis, S. Sabesan and K. Tsakalis, Pramana, J. Phys. PRAMCI 0304-4289 10.1007/BF02706199 64, 513 (2005).
-
(2005)
Pramana, J. Phys.
, vol.64
, pp. 513
-
-
Prasad, A.1
-
8
-
-
0003594964
-
-
Cambridge University Press, Cambridge, England
-
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, A Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, England, 2001).
-
(2001)
Synchronization, A Universal Concept in Nonlinear Science
-
-
Pikovsky, A.1
Rosenblum, M.2
Kurths, J.3
-
9
-
-
0001480451
-
-
1364-5021 10.1098/rspa.2001.0888
-
M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, Proc. R. Soc. London 1364-5021 10.1098/rspa.2001.0888 458, 563 (2002).
-
(2002)
Proc. R. Soc. London
, vol.458
, pp. 563
-
-
Bennett, M.1
Schatz, M.F.2
Rockwood, H.3
Wiesenfeld, K.4
-
10
-
-
84859544135
-
-
Numerically, however, this limit is difficult to demonstrate.
-
Numerically, however, this limit is difficult to demonstrate.
-
-
-
-
11
-
-
0021835107
-
On the stability of coupled chemical oscillators
-
DOI 10.1016/0167-2789(85)90182-4
-
K. Bar-Eli, Physica D PDNPDT 0167-2789 10.1016/0167-2789(85)90182-4 14, 242 (1985). (Pubitemid 15540670)
-
(1985)
Physica D: Nonlinear Phenomena
, vol.D14
, Issue.2
, pp. 242-252
-
-
Bar-Eli, K.1
-
13
-
-
34147192429
-
-
JSTPBS 0022-4715 10.1007/BF01013676
-
R. E. Mirollo and S. H. Strogatz, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01013676 60, 245 (1990);
-
(1990)
J. Stat. Phys.
, vol.60
, pp. 245
-
-
Mirollo, R.E.1
Strogatz, S.H.2
-
14
-
-
0001130397
-
-
PDNPDT 0167-2789 10.1016/0167-2789(90)90124-8
-
G. B. Ermentrout, Physica D PDNPDT 0167-2789 10.1016/0167-2789(90)90124-8 41, 219 (1990);
-
(1990)
Physica D
, vol.41
, pp. 219
-
-
Ermentrout, G.B.1
-
15
-
-
0032560805
-
Death by delay
-
DOI 10.1038/28488
-
S.H. Strogatz, Nature (London) NATUAS 0028-0836 10.1038/28488 394, 316 (1998); (Pubitemid 28373808)
-
(1998)
Nature
, vol.394
, Issue.6691
, pp. 316-317
-
-
Strogatz, S.H.1
-
16
-
-
0347963951
-
-
PDNPDT 0167-2789 10.1016/S0167-2789(99)00004-4
-
D. V. R. Reddy, A. Sen, and G. L. Johnston, Physica D PDNPDT 0167-2789 10.1016/S0167-2789(99)00004-4 129, 15 (1999).
-
(1999)
Physica D
, vol.129
, pp. 15
-
-
Reddy, D.V.R.1
Sen, A.2
Johnston, G.L.3
-
17
-
-
45149139481
-
-
PDNPDT 0167-2789 10.1016/0167-2789(90)90007-C
-
D. G. Aronson, G. B. Ermentrout, and N. Koppel, Physica D PDNPDT 0167-2789 10.1016/0167-2789(90)90007-C 41, 403 (1990).
-
(1990)
Physica D
, vol.41
, pp. 403
-
-
Aronson, D.G.1
Ermentrout, G.B.2
Koppel, N.3
-
19
-
-
34548850400
-
Amplitude death in the absence of time delays in identical coupled oscillators
-
DOI 10.1103/PhysRevE.76.035201
-
R. Karnatak, R. Ramaswamy, and A. Prasad, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.76.035201 76, 035201 (R) (2007). (Pubitemid 47443095)
-
(2007)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.76
, Issue.3
, pp. 035201
-
-
Karnatak, R.1
Ramaswamy, R.2
Prasad, A.3
-
20
-
-
1442281279
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.68.067202
-
K. Konishi, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.68.067202 68, 067202 (2003).
-
(2003)
Phys. Rev. e
, vol.68
, pp. 067202
-
-
Konishi, K.1
-
21
-
-
76749156130
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.81.027201
-
A. Prasad, M. Dhamala, B. M. Adhikari, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.81.027201 81, 027201 (2010);
-
(2010)
Phys. Rev. e
, vol.81
, pp. 027201
-
-
Prasad, A.1
Dhamala, M.2
Adhikari, B.M.3
Ramaswamy, R.4
-
22
-
-
77956112569
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.027201
-
A. Prasad, M. Dhamala, B. M. Adhikari, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.027201 82, 027201 (2010);
-
(2010)
Phys. Rev. e
, vol.82
, pp. 027201
-
-
Prasad, A.1
Dhamala, M.2
Adhikari, B.M.3
Ramaswamy, R.4
-
23
-
-
85126483141
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.027201 0960-0779 CSFOEH 10.1016/j.chaos.2010.08.001
-
A. Prasad, Chaos, Solitons Fractals PLEEE8 1539-3755 10.1103/PhysRevE.82. 027201 43, 42 (2010). 0960-0779 CSFOEH 10.1016/j.chaos.2010.08.001
-
(2010)
Chaos, Solitons Fractals
, vol.43
, pp. 42
-
-
Prasad, A.1
-
24
-
-
9744234606
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.094101
-
F. M. Atay, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91. 094101 91, 094101 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 094101
-
-
Atay, F.M.1
-
25
-
-
77955152393
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.017201
-
G. Saxena, A. Prasad, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.017201 82, 017201 (2010).
-
(2010)
Phys. Rev. e
, vol.82
, pp. 017201
-
-
Saxena, G.1
Prasad, A.2
Ramaswamy, R.3
-
26
-
-
33749403151
-
Phase-flip bifurcation induced by time delay
-
DOI 10.1103/PhysRevE.74.035204
-
A. Prasad, J. Kurths, S. K. Dana, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.74.035204 74, 035204 (R) (2006). (Pubitemid 44505239)
-
(2006)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.74
, Issue.3
, pp. 035204
-
-
Prasad, A.1
Kurths, J.2
Dana, S.K.3
Ramaswamy, R.4
-
27
-
-
46449133957
-
-
CHAOEH 1054-1500 10.1063/1.2905146
-
A. Prasad, S. K. Dana, R. Karnatak, J. Kurths, B. Blasius, and R. Ramaswamy, Chaos CHAOEH 1054-1500 10.1063/1.2905146 18, 023111 (2008).
-
(2008)
Chaos
, vol.18
, pp. 023111
-
-
Prasad, A.1
Dana, S.K.2
Karnatak, R.3
Kurths, J.4
Blasius, B.5
Ramaswamy, R.6
-
28
-
-
78651292736
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.046219
-
R. Karnatak, N. Punetha, A. Prasad, and R. Ramaswamy, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.046219 82, 046219 (2010).
-
(2010)
Phys. Rev. e
, vol.82
, pp. 046219
-
-
Karnatak, R.1
Punetha, N.2
Prasad, A.3
Ramaswamy, R.4
-
29
-
-
84859551169
-
-
The models, Eqs. and , are integrated using the Runge-Kutta fourth-order scheme with integration step Δt=τ/N, where discreteness N=1000 for the Landau-Stuart system and 2000 for the Rössler system. The random numbers in [0,1] are used for initial conditions in the interval [-τ,0]. Figures , and are calculated in a 100×100 grid.
-
The models, Eqs. and, are integrated using the Runge-Kutta fourth-order scheme with integration step Δ t = τ / N, where discreteness N = 1000 for the Landau-Stuart system and 2000 for the Rössler system. The random numbers in [0, 1] are used for initial conditions in the interval [- τ, 0]. Figures, and are calculated in a 100 × 100 grid.
-
-
-
-
30
-
-
0035277112
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.63.036213
-
V. Ahlers, R. Zillmer, and A. Pikovsky, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.63.036213 63, 036213 (2001).
-
(2001)
Phys. Rev. e
, vol.63
, pp. 036213
-
-
Ahlers, V.1
Zillmer, R.2
Pikovsky, A.3
-
31
-
-
49549126801
-
-
PYLAAG 0375-9601 10.1016/0375-9601(76)90101-8
-
O. Rössler, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(76) 90101-8 57, 397 (1976).
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397
-
-
Rössler, O.1
-
32
-
-
84859544134
-
-
The largest Lyapunov exponent of uncoupled Rössler systems for the given values of parameters is approximately around 0.08.
-
The largest Lyapunov exponent of uncoupled Rössler systems for the given values of parameters is approximately around 0.08.
-
-
-
|