-
1
-
-
70349507985
-
Geodesics in the space of measure-preserving maps and plans
-
L. Ambrosio and A. Figalli, Geodesics in the space of measure-preserving maps and plans, Arch. Ration. Mech. Anal., 194 (2009), 421-462.
-
(2009)
Arch. Ration. Mech. Anal.
, vol.194
, pp. 421-462
-
-
Ambrosio, L.1
Figalli, A.2
-
2
-
-
38849176743
-
On the regularity of the pressure field of Brenier's weak solutions to incompressible euler equations
-
L. Ambrosio and A. Figalli, On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations, Calc. Var. Partial Differential Equations, 31 (2008), 497-509.
-
(2008)
Calc. Var. Partial Differential Equations
, vol.31
, pp. 497-509
-
-
Ambrosio, L.1
Figalli, A.2
-
3
-
-
0003722380
-
-
Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York
-
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
-
(2000)
Functions of Bounded Variation and Free Discontinuity Problems
-
-
Ambrosio, L.1
Fusco, N.2
Pallara, D.3
-
4
-
-
0001356905
-
Sur la géométrie differentielle des groupes de Lie de dimension inńie et ses applications à l'hydrodynamique des uides parfaits (French
-
V. Arnold, Sur la géométrie differentielle des groupes de Lie de dimension inńie et ses applications à l'hydrodynamique des uides parfaits (French), Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
-
(1966)
Ann. Inst. Fourier (Grenoble
, vol.16
, pp. 319-361
-
-
Arnold, V.1
-
5
-
-
84968509316
-
The least action principle and the related concept of generalized ows for incom- pressible perfect uids
-
Y. Brenier, The least action principle and the related concept of generalized ows for incom- pressible perfect uids, J. Amer. Mat. Soc., 2 (1989), 225-255
-
(1989)
J. Amer. Mat. Soc.
, vol.2
, pp. 225-255
-
-
Brenier, Y.1
-
6
-
-
17644427854
-
Semiconcave functions, hamilton-jacobi equations, and optimal control
-
Birkhauser Boston, Inc., Boston, MA
-
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhauser Boston, Inc., Boston, MA, 2004.
-
(2004)
Progress in Nonlinear Differential Equations and their Applications
, vol.58
-
-
Cannarsa, P.1
Sinestrari, C.2
-
7
-
-
0013152785
-
Probabilities and potential
-
North-Holland Publishing Co., Amsterdam-New York
-
C. Dellacherie and P.-A. Meyer, "Probabilities and Potential," North-Holland Mathematics Studies, 29, North-Holland Publishing Co., Amsterdam-New York, 1978.
-
(1978)
North-Holland Mathematics Studies
, vol.29
-
-
Dellacherie, C.1
Meyer, P.-A.2
-
8
-
-
0001052255
-
Groups of diffeomorphisms and the motion of an incompressible uid
-
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible uid, Annals of Math. (2), 92 (1970), 102-163.
-
(1970)
Annals of Math.
, vol.2
, Issue.92
, pp. 102-163
-
-
Ebin, D.G.1
Marsden, J.2
-
9
-
-
0003265439
-
Geometry of sets and measures in euclidean spaces. Fractals and rectifiability
-
Cambridge University Press, Cambridge
-
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.
-
(1995)
Cambridge Studies in Advanced Mathematics
, vol.44
-
-
Mattila, P.1
-
10
-
-
0002479515
-
The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible uid (Russian
-
A. I. Shnirel'man, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible uid (Russian), Mat. Sb. (N.S.), 128 (1985), 82-109.
-
(1985)
Mat. Sb. (N.S.
, vol.128
, pp. 82-109
-
-
Shnirelman, A.I.1
-
11
-
-
0001586642
-
Generalized uid ows, their approximation and applications
-
A. I. Shnirel'man, Generalized uid ows, their approximation and applications, Geom. Funct. Anal., 4 (1994), 586-620
-
(1994)
Geom. Funct. Anal.
, vol.4
, pp. 586-620
-
-
Shnirelman, A.I.1
|