메뉴 건너뛰기




Volumn 728, Issue , 2012, Pages 1-24

The structural biology of the FGF19 subfamily

Author keywords

[No Author keywords available]

Indexed keywords

ALPHA KLOTHO PROTEIN; BETA KLOTHO PROTEIN; FIBROBLAST GROWTH FACTOR 1; FIBROBLAST GROWTH FACTOR 19; FIBROBLAST GROWTH FACTOR 21; FIBROBLAST GROWTH FACTOR 23; FIBROBLAST GROWTH FACTOR 4; FIBROBLAST GROWTH FACTOR 8; FIBROBLAST GROWTH FACTOR 9; FIBROBLAST GROWTH FACTOR RECEPTOR; FIBROBLAST GROWTH FACTOR RECEPTOR 1C; HEPARAN SULFATE; KERATINOCYTE GROWTH FACTOR; KLOTHO PROTEIN; UNCLASSIFIED DRUG; BETA GLUCURONIDASE; FIBROBLAST GROWTH FACTOR;

EID: 84859519654     PISSN: 00652598     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4614-0887-1_1     Document Type: Article
Times cited : (72)

References (140)
  • 2
    • 0027344852 scopus 로고
    • Structural and functional diversity in the FGF receptor multigene family
    • Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60:1-41
    • (1993) Adv Cancer Res , vol.60 , pp. 1-41
    • Johnson, D.E.1    Williams, L.T.2
  • 3
    • 18144423534 scopus 로고    scopus 로고
    • Structural basis for fibroblast growth factor receptor activation
    • Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16(2):107-137
    • (2005) Cytokine Growth Factor Rev , vol.16 , Issue.2 , pp. 107-137
    • Mohammadi, M.1    Olsen, S.K.2    Ibrahimi, O.A.3
  • 4
    • 4744372082 scopus 로고    scopus 로고
    • Evolution of the Fgf and Fgfr gene families
    • Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20(11):563-569
    • (2004) Trends Genet , vol.20 , Issue.11 , pp. 563-569
    • Itoh, N.1    Ornitz, D.M.2
  • 5
    • 38149134409 scopus 로고    scopus 로고
    • Functional evolutionary history ofthe mouse Fgfgene family
    • Itoh N, Ornitz DM. Functional evolutionary history ofthe mouse Fgfgene family. Dev Dyn2008; 237(1):18-27
    • (2008) Dev Dyn , vol.237 , Issue.1 , pp. 18-27
    • Itoh, N.1    Ornitz, D.M.2
  • 6
    • 24644496774 scopus 로고    scopus 로고
    • An evolutionary history of the FGF superfamily
    • Popovici C, Roubin R, Coulier F et al. An evolutionary history of the FGF superfamily. Bioessays 2005; 27(8):849-857
    • (2005) Bioessays , vol.27 , Issue.8 , pp. 849-857
    • Popovici, C.1    Roubin, R.2    Coulier, F.3
  • 7
    • 0035937405 scopus 로고    scopus 로고
    • Male-to-female sex reversal in mice lacking fibroblast growth factor 9
    • Colvin JS, Green RP, Schmahl J et al. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001; 104(6):875-889
    • (2001) Cell , vol.104 , Issue.6 , pp. 875-889
    • Colvin, J.S.1    Green, R.P.2    Schmahl, J.3
  • 8
    • 70350646899 scopus 로고    scopus 로고
    • Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors
    • Goriely A, Hansen RM, Taylor IB et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 2009; 41(11):1247-1252
    • (2009) Nat Genet , vol.41 , Issue.11 , pp. 1247-1252
    • Goriely, A.1    Hansen, R.M.2    Taylor, I.B.3
  • 9
    • 0042490798 scopus 로고    scopus 로고
    • Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line
    • Goriely A, McVean GA, Rojmyr M et al. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 2003; 301(5633):643-646
    • (2003) Science , vol.301 , Issue.5633 , pp. 643-646
    • Goriely, A.1    McVean, G.A.2    Rojmyr, M.3
  • 10
    • 0033155718 scopus 로고    scopus 로고
    • FGF-FGFR signaling invertebrate organogenesis
    • Kato S, Sekine K. FGF-FGFR signaling invertebrate organogenesis. Cell Mol Biol (Noisy-le-grand) 1999; 45(5):631-638
    • (1999) Cell Mol Biol (Noisy-le-grand) , vol.45 , Issue.5 , pp. 631-638
    • Kato, S.1    Sekine, K.2
  • 11
    • 0027436330 scopus 로고
    • FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb
    • Niswander L, Tickle C, Vogel A et al. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75(3):579-587
    • (1993) Cell , vol.75 , Issue.3 , pp. 579-587
    • Niswander, L.1    Tickle, C.2    Vogel, A.3
  • 12
    • 33646045034 scopus 로고    scopus 로고
    • A clock and wavefront mechanism for somite formation
    • Baker RE, Schnell S, Maini PK. A clock and wavefront mechanism for somite formation. Dev Biol 2006; 293(1):116-126
    • (2006) Dev Biol , vol.293 , Issue.1 , pp. 116-126
    • Baker, R.E.1    Schnell, S.2    Maini, P.K.3
  • 13
    • 33644522079 scopus 로고    scopus 로고
    • Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis
    • Dale JK, Malapert P, Chal J et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 2006; 10(3):355-366
    • (2006) Dev Cell , vol.10 , Issue.3 , pp. 355-366
    • Dale, J.K.1    Malapert, P.2    Chal, J.3
  • 14
    • 0035958586 scopus 로고    scopus 로고
    • FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation
    • Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106(2):219-232
    • (2001) Cell , vol.106 , Issue.2 , pp. 219-232
    • Dubrulle, J.1    McGrew, M.J.2    Pourquie, O.3
  • 15
    • 3543138873 scopus 로고    scopus 로고
    • The chick embryo: A leading model in somitogenesis studies
    • Pourquie O. The chick embryo: a leading model in somitogenesis studies. Mech Dev 2004; 121(9):1069-1079
    • (2004) Mech Dev , vol.121 , Issue.9 , pp. 1069-1079
    • Pourquie, O.1
  • 16
    • 0035214904 scopus 로고    scopus 로고
    • Fgf/MAPK signalling is a crucial positional cue in somite boundary formation
    • Sawada A, Shinya M, Jiang YJ et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development2001; 128(23):4873-4880
    • (2001) Development , vol.128 , Issue.23 , pp. 4873-4880
    • Sawada, A.1    Shinya, M.2    Jiang, Y.J.3
  • 17
    • 0034956610 scopus 로고    scopus 로고
    • Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme
    • Colvin JS, White AC, Pratt SJ et al. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001; 128(11):2095-2106
    • (2001) Development , vol.128 , Issue.11 , pp. 2095-2106
    • Colvin, J.S.1    White, A.C.2    Pratt, S.J.3
  • 18
    • 35349007958 scopus 로고    scopus 로고
    • The Fgf families in humans, mice and zebrafish: Their evolutional processes and roles in development, metabolism and disease
    • Itoh N. The Fgf families in humans, mice and zebrafish: their evolutional processes and roles in development, metabolism and disease. Biol Pharm Bull 2007; 30(10):1819-1825
    • (2007) Biol Pharm Bull , vol.30 , Issue.10 , pp. 1819-1825
    • Itoh, N.1
  • 19
    • 46049119998 scopus 로고    scopus 로고
    • FGF-16 is required for embryonic heart development
    • Lu SY, Sheikh F, Sheppard PC et al. FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 2008; 373(2):270-274
    • (2008) Biochem Biophys Res Commun , vol.373 , Issue.2 , pp. 270-274
    • Lu, S.Y.1    Sheikh, F.2    Sheppard, P.C.3
  • 20
    • 0038545609 scopus 로고    scopus 로고
    • Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation
    • Sugi Y, Ito N, Szebenyi G et al. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol 2003; 258(2):252-263
    • (2003) Dev Biol , vol.258 , Issue.2 , pp. 252-263
    • Sugi, Y.1    Ito, N.2    Szebenyi, G.3
  • 21
    • 38549105196 scopus 로고    scopus 로고
    • Area patterning of the mammalian cortex
    • OLeary DD, Chou SJ, Sahara S. Area patterning of the mammalian cortex. Neuron 2007; 56(2):252-269
    • (2007) Neuron , vol.56 , Issue.2 , pp. 252-269
    • Oleary, D.D.1    Chou, S.J.2    Sahara, S.3
  • 23
    • 2542505481 scopus 로고    scopus 로고
    • Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
    • Fu L, John LM, Adams SH et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145(6):2594-2603
    • (2004) Endocrinology , vol.145 , Issue.6 , pp. 2594-2603
    • Fu, L.1    John, L.M.2    Adams, S.H.3
  • 24
    • 0037663483 scopus 로고    scopus 로고
    • Definition of a novel growth factor-dependent signal cascade for the suppression ofbile acidbiosynthesis
    • Holt JA, Luo G, Billin AN et al. Definition of a novel growth factor-dependent signal cascade for the suppression ofbile acidbiosynthesis. Genes Dev 2003; 17(13):1581-1591
    • (2003) Genes Dev , vol.17 , Issue.13 , pp. 1581-1591
    • Holt, J.A.1    Luo, G.2    Billin, A.N.3
  • 25
    • 18344394556 scopus 로고    scopus 로고
    • Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
    • Tomlinson E, Fu L, John L et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143(5):1741-1747
    • (2002) Endocrinology , vol.143 , Issue.5 , pp. 1741-1747
    • Tomlinson, E.1    Fu, L.2    John, L.3
  • 26
    • 18144378440 scopus 로고    scopus 로고
    • FGF23 and disorders of phosphate homeostasis
    • Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 2005; 16(2):221-232
    • (2005) Cytokine Growth Factor Rev , vol.16 , Issue.2 , pp. 221-232
    • Yu, X.1    White, K.E.2
  • 27
    • 67650533766 scopus 로고    scopus 로고
    • Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels
    • Goetz R, Dover K, Laezza F et al. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J Biol Chem 2009; 284(26):17883-17896
    • (2009) J Biol Chem , vol.284 , Issue.26 , pp. 17883-17896
    • Goetz, R.1    Dover, K.2    Laezza, F.3
  • 28
    • 18144380347 scopus 로고    scopus 로고
    • Fibroblast growth factor homologous factors: Evolution, structure and function
    • Goldfarb M. Fibroblast growth factor homologous factors: evolution, structure and function. Cytokine Growth Factor Rev 2005; 16(2):215-220
    • (2005) Cytokine Growth Factor Rev , vol.16 , Issue.2 , pp. 215-220
    • Goldfarb, M.1
  • 29
    • 0141780824 scopus 로고    scopus 로고
    • Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs
    • Olsen SK, Garbi M, Zampieri N et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 2003; 278(36):34226-34236
    • (2003) J Biol Chem , vol.278 , Issue.36 , pp. 34226-34236
    • Olsen, S.K.1    Garbi, M.2    Zampieri, N.3
  • 30
    • 0026318615 scopus 로고
    • Three-dimensional structure of human basic fibroblast growth factor
    • Eriksson AE, Cousens LS, Weaver LH et al. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA 1991; 88(8):3441-3445
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.8 , pp. 3441-3445
    • Eriksson, A.E.1    Cousens, L.S.2    Weaver, L.H.3
  • 31
    • 0026323941 scopus 로고
    • Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta
    • Zhang JD, Cousens LS, Barr PJ et al. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta. Proc Natl Acad Sci USA 1991; 88(8):3446-3450
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.8 , pp. 3446-3450
    • Zhang, J.D.1    Cousens, L.S.2    Barr, P.J.3
  • 32
    • 0026011735 scopus 로고
    • Three-dimensional structures of acidic and basic fibroblast growth factors
    • Zhu X, Komiya H, Chirino A et al. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 1991; 251(4989):90-93
    • (1991) Science , vol.251 , Issue.4989 , pp. 90-93
    • Zhu, X.1    Komiya, H.2    Chirino, A.3
  • 33
    • 30944448671 scopus 로고    scopus 로고
    • Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain
    • Olsen SK, Li JY, Bromleigh C et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev 2006; 20(2):185-198
    • (2006) Genes Dev , vol.20 , Issue.2 , pp. 185-198
    • Olsen, S.K.1    Li, J.Y.2    Bromleigh, C.3
  • 34
    • 0034640103 scopus 로고    scopus 로고
    • Crystal structures of two FGF-FGFR complexes reveal the determinants ofligand-receptor specificity
    • Plotnikov AN, Hubbard SR, Schlessinger J et al. Crystal structures of two FGF-FGFR complexes reveal the determinants ofligand-receptor specificity. Cell 2000; 101(4):413-424
    • (2000) Cell , vol.101 , Issue.4 , pp. 413-424
    • Plotnikov, A.N.1    Hubbard, S.R.2    Schlessinger, J.3
  • 35
    • 0345269798 scopus 로고    scopus 로고
    • Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors
    • Yeh BK, Igarashi M, Eliseenkova AV et al. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc Natl Acad Sci USA 2003; 100(5):2266-2271
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.5 , pp. 2266-2271
    • Yeh, B.K.1    Igarashi, M.2    Eliseenkova, A.V.3
  • 36
    • 0024375271 scopus 로고
    • Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor
    • Lee PL, Johnson DE, Cousens LS et al. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 245(4913):57-60
    • (1989) Science , vol.245 , Issue.4913 , pp. 57-60
    • Lee, P.L.1    Johnson, D.E.2    Cousens, L.S.3
  • 37
    • 0033520472 scopus 로고    scopus 로고
    • Structural basis for FGF receptor dimerization and activation
    • Plotnikov AN, Schlessinger J, Hubbard SR et al. Structural basis for FGF receptor dimerization and activation. Cell 1999; 98(5):641-650
    • (1999) Cell , vol.98 , Issue.5 , pp. 641-650
    • Plotnikov, A.N.1    Schlessinger, J.2    Hubbard, S.R.3
  • 38
    • 0034602719 scopus 로고    scopus 로고
    • Structural interactions of fibroblast growth factor receptor with its ligands
    • Stauber DJ, DiGabriele AD, Hendrickson WA. Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 2000; 97(1):49-54
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.1 , pp. 49-54
    • Stauber, D.J.1    Digabriele, A.D.2    Hendrickson, W.A.3
  • 39
    • 10744229159 scopus 로고    scopus 로고
    • Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity
    • Olsen SK, Ibrahimi OA, Raucci A et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci USA 2004; 101(4):935-940
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.4 , pp. 935-940
    • Olsen, S.K.1    Ibrahimi, O.A.2    Raucci, A.3
  • 40
    • 0028986809 scopus 로고
    • Alternately spliced NH2-terminal immunoglobulin-like Loop i in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1
    • Wang F, Kan M, Yan G et al. Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem 1995; 270(17):10231-10235
    • (1995) J Biol Chem , vol.270 , Issue.17 , pp. 10231-10235
    • Wang, F.1    Kan, M.2    Yan, G.3
  • 41
    • 0025912340 scopus 로고
    • The human fibroblast growth factor receptor genes: A common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain
    • Johnson DE, Lu J, Chen H et al. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. MolCellBiol 1991; 11(9):4627-4634
    • (1991) MolCellBiol , vol.11 , Issue.9 , pp. 4627-4634
    • Johnson, D.E.1    Lu, J.2    Chen, H.3
  • 42
    • 0026570847 scopus 로고
    • Determination ofligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene
    • Miki T, Bottaro DP, Fleming TP et al. Determination ofligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 1992; 89(1):246-250
    • (1992) Proc Natl Acad Sci USA , vol.89 , Issue.1 , pp. 246-250
    • Miki, T.1    Bottaro, D.P.2    Fleming, T.P.3
  • 43
    • 0027199056 scopus 로고
    • Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2)
    • Orr-Urtreger A, Bedford MT, Burakova T et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993; 158(2):475-486
    • (1993) Dev Biol , vol.158 , Issue.2 , pp. 475-486
    • Orr-Urtreger, A.1    Bedford, M.T.2    Burakova, T.3
  • 44
    • 0034956917 scopus 로고    scopus 로고
    • Heparan sulfate: Lessons from knockout mice
    • Forsberg E, Kjellen L. Heparan sulfate: lessons from knockout mice. J Clin Invest 2001; 108(2):175-180
    • (2001) J Clin Invest , vol.108 , Issue.2 , pp. 175-180
    • Forsberg, E.1    Kjellen, L.2
  • 45
    • 0032841757 scopus 로고    scopus 로고
    • Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development
    • Lin X, Buff EM, Perrimon N et al. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999; 126(17):3715-3723
    • (1999) Development , vol.126 , Issue.17 , pp. 3715-3723
    • Lin, X.1    Buff, E.M.2    Perrimon, N.3
  • 46
    • 0026502460 scopus 로고
    • Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells
    • Ornitz DM, Yayon A, Flanagan JG et al. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12(1):240-247
    • (1992) Mol Cell Biol , vol.12 , Issue.1 , pp. 240-247
    • Ornitz, D.M.1    Yayon, A.2    Flanagan, J.G.3
  • 47
    • 0025835670 scopus 로고
    • Requirement of heparan sulfate for bFGF-mediated fibroblast growth and my oblast differentiation
    • Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and my oblast differentiation. Science 1991; 252(5013):1705-1708
    • (1991) Science , vol.252 , Issue.5013 , pp. 1705-1708
    • Rapraeger, A.C.1    Krufka, A.2    Olwin, B.B.3
  • 48
    • 0025976838 scopus 로고
    • Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor
    • Yayon A, Klagsbrun M, Esko JD et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64(4):841-848
    • (1991) Cell , vol.64 , Issue.4 , pp. 841-848
    • Yayon, A.1    Klagsbrun, M.2    Esko, J.D.3
  • 49
    • 23044444804 scopus 로고    scopus 로고
    • Heparan sulfate: A complex polymer charged with biological activity
    • Whitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005; 105(7):2745-2764
    • (2005) Chem Rev , vol.105 , Issue.7 , pp. 2745-2764
    • Whitelock, J.M.1    Iozzo, R.V.2
  • 50
    • 25844440918 scopus 로고    scopus 로고
    • A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs
    • Mohammadi M, Olsen SK, Goetz R. A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 2005; 15(5):506-516
    • (2005) Curr Opin Struct Biol , vol.15 , Issue.5 , pp. 506-516
    • Mohammadi, M.1    Olsen, S.K.2    Goetz, R.3
  • 51
    • 73949157671 scopus 로고    scopus 로고
    • Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis
    • Makarenkova HP, Hoffman MP, Beenken A et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis.Sci Signal 2009; 2(88):ra55
    • (2009) Sci Signal , vol.2 , Issue.88
    • Makarenkova, H.P.1    Hoffman, M.P.2    Beenken, A.3
  • 52
    • 21744450786 scopus 로고    scopus 로고
    • Heparan sulphate proteoglycans: The sweet side of development
    • Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6(7):530-541
    • (2005) Nat Rev Mol Cell Biol , vol.6 , Issue.7 , pp. 530-541
    • Hacker, U.1    Nybakken, K.2    Perrimon, N.3
  • 53
    • 0023687871 scopus 로고
    • Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation
    • Saksela O, Moscatelli D, Sommer A et al. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 1988; 107(2):743-751
    • (1988) J Cell Biol , vol.107 , Issue.2 , pp. 743-751
    • Saksela, O.1    Moscatelli, D.2    Sommer, A.3
  • 54
    • 1842530198 scopus 로고    scopus 로고
    • Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library
    • Ashikari-Hada S, Habuchi H, Kariya Y et al. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 2004; 279(13):12346-12354
    • (2004) J Biol Chem , vol.279 , Issue.13 , pp. 12346-12354
    • Ashikari-Hada, S.1    Habuchi, H.2    Kariya, Y.3
  • 55
    • 0033635299 scopus 로고    scopus 로고
    • Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFRbinding and dimerization
    • Schlessinger J, Plotnikov AN, Ibrahimi OA et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFRbinding and dimerization. Mol Cell 2000; 6(3):743-750
    • (2000) Mol Cell , vol.6 , Issue.3 , pp. 743-750
    • Schlessinger, J.1    Plotnikov, A.N.2    Ibrahimi, O.A.3
  • 56
    • 34247565954 scopus 로고    scopus 로고
    • Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
    • Goetz R, Beenken A, Ibrahimi OA et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007; 27(9):3417-3428
    • (2007) Mol Cell Biol , vol.27 , Issue.9 , pp. 3417-3428
    • Goetz, R.1    Beenken, A.2    Ibrahimi, O.A.3
  • 57
    • 34548250374 scopus 로고    scopus 로고
    • A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases
    • Chen H, Ma J, Li W et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol Cell 2007; 27(5):717-730
    • (2007) Mol Cell , vol.27 , Issue.5 , pp. 717-730
    • Chen, H.1    Ma, J.2    Li, W.3
  • 58
    • 58149399336 scopus 로고    scopus 로고
    • A crystallographic snapshot of tyrosine trans-phosphorylation in action
    • Chen H, Xu CF, Ma J et al. A crystallographic snapshot of tyrosine trans-phosphorylation in action. Proc Natl Acad Sci USA 2008; 105(50):19660-19665
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.50 , pp. 19660-19665
    • Chen, H.1    Xu, C.F.2    Ma, J.3
  • 59
    • 33344455174 scopus 로고    scopus 로고
    • Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction
    • Furdui CM, Lew ED, Schlessinger J et al. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 2006; 21(5):711-717
    • (2006) Mol Cell , vol.21 , Issue.5 , pp. 711-717
    • Furdui, C.M.1    Lew, E.D.2    Schlessinger, J.3
  • 60
    • 0030027488 scopus 로고    scopus 로고
    • Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction
    • Mohammadi M, Dikic I, Sorokin A et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996; 16(3):977-989
    • (1996) Mol Cell Biol , vol.16 , Issue.3 , pp. 977-989
    • Mohammadi, M.1    Dikic, I.2    Sorokin, A.3
  • 61
    • 0026641249 scopus 로고
    • Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis
    • Mohammadi M, Dionne CA, Li W et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358(6388):681-684
    • (1992) Nature , vol.358 , Issue.6388 , pp. 681-684
    • Mohammadi, M.1    Dionne, C.A.2    Li, W.3
  • 62
    • 0026731562 scopus 로고
    • Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis
    • Peters KG, Marie J, Wilson E et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358(6388):678-681
    • (1992) Nature , vol.358 , Issue.6388 , pp. 678-681
    • Peters, K.G.1    Marie, J.2    Wilson, E.3
  • 63
    • 66349106792 scopus 로고    scopus 로고
    • Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop
    • Seo JH, Suenaga A, Hatakeyama M et al. Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol 2009; 29(11):3076-3087
    • (2009) Mol Cell Biol , vol.29 , Issue.11 , pp. 3076-3087
    • Seo, J.H.1    Suenaga, A.2    Hatakeyama, M.3
  • 64
    • 0028883178 scopus 로고
    • Phospholipid signaling
    • Divecha N, Irvine RF. Phospholipid signaling. Cell 1995; 80(2):269-278
    • (1995) Cell , vol.80 , Issue.2 , pp. 269-278
    • Divecha, N.1    Irvine, R.F.2
  • 65
    • 0028986599 scopus 로고
    • Reduced activation ofRAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis
    • Huang J, Mohammadi M, Rodrigues GA et al. Reduced activation ofRAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem 1995;270(10):5065- 5072
    • (1995) J Biol Chem , vol.270 , Issue.10 , pp. 5065-5072
    • Huang, J.1    Mohammadi, M.2    Rodrigues, G.A.3
  • 66
    • 0034644539 scopus 로고    scopus 로고
    • Cell signaling by receptor tyrosine kinases
    • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2):211-225
    • (2000) Cell , vol.103 , Issue.2 , pp. 211-225
    • Schlessinger, J.1
  • 67
    • 0030706168 scopus 로고    scopus 로고
    • A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway
    • Kouhara H, Hadari YR, Spivak-Kroizman T et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89(5):693-702
    • (1997) Cell , vol.89 , Issue.5 , pp. 693-702
    • Kouhara, H.1    Hadari, Y.R.2    Spivak-Kroizman, T.3
  • 68
    • 0033635195 scopus 로고    scopus 로고
    • Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors
    • Dhalluin C, Yan KS, Plotnikova O et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol Cell 2000; 6(4):921-929
    • (2000) Mol Cell , vol.6 , Issue.4 , pp. 921-929
    • Dhalluin, C.1    Yan, K.S.2    Plotnikova, O.3
  • 69
    • 0033974109 scopus 로고    scopus 로고
    • FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors
    • Ong SH, Guy GR, Hadari YR et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 2000; 20(3):979-989
    • (2000) Mol Cell Biol , vol.20 , Issue.3 , pp. 979-989
    • Ong, S.H.1    Guy, G.R.2    Hadari, Y.R.3
  • 70
    • 0035933094 scopus 로고    scopus 로고
    • Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins
    • Ong SH, Hadari YR, Gotoh N et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci USA 2001; 98(11):6074-6079
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.11 , pp. 6074-6079
    • Ong, S.H.1    Hadari, Y.R.2    Gotoh, N.3
  • 71
    • 0031835659 scopus 로고    scopus 로고
    • Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation
    • Hadari YR, Kouhara H, Lax I et al. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 1998; 18(7):3966-3973
    • (1998) Mol Cell Biol , vol.18 , Issue.7 , pp. 3966-3973
    • Hadari, Y.R.1    Kouhara, H.2    Lax, I.3
  • 72
    • 18144415072 scopus 로고    scopus 로고
    • Mechanisms underlying differential responses to FGF signaling
    • Dailey L, Ambrosetti D, Mansukhani A et al. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16(2):233-247
    • (2005) Cytokine Growth Factor Rev , vol.16 , Issue.2 , pp. 233-247
    • Dailey, L.1    Ambrosetti, D.2    Mansukhani, A.3
  • 73
    • 0034898556 scopus 로고    scopus 로고
    • Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis
    • Bellosta P, Iwahori A, Plotnikov AN et al. Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis. Mol Cell Biol 2001; 21(17):5946-5957
    • (2001) Mol Cell Biol , vol.21 , Issue.17 , pp. 5946-5957
    • Bellosta, P.1    Iwahori, A.2    Plotnikov, A.N.3
  • 74
    • 68849110534 scopus 로고    scopus 로고
    • Homodimerization Controls the FGF9 Subfamilys Receptor Binding and Heparan Sulfate Dependent Diffusion in the Extracellular Matrix
    • Kalinina J, Byron SA, Makarenkova HP et al. Homodimerization Controls the FGF9 Subfamilys Receptor Binding and Heparan Sulfate Dependent Diffusion in the Extracellular Matrix. Mol Cell Biol 2009
    • (2009) Mol Cell Biol
    • Kalinina, J.1    Byron, S.A.2    Makarenkova, H.P.3
  • 75
    • 0032464009 scopus 로고    scopus 로고
    • Correlation between the 1.6 A crystal structure and mutational analysis ofkeratinocyte growth factor
    • OsslundTD, SyedR, Singer E etal. Correlation between the 1.6 A crystal structure and mutational analysis ofkeratinocyte growth factor. Protein Sci 1998; 7(8):1681-1690
    • (1998) Protein Sci , vol.7 , Issue.8 , pp. 1681-1690
    • Osslund, T.D.1    Syed, R.2    Singer, E.3
  • 76
    • 0035830878 scopus 로고    scopus 로고
    • Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition
    • Plotnikov AN, Eliseenkova AV, Ibrahimi OA et al. Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition. J Biol Chem 2001; 276(6):4322-4329
    • (2001) J Biol Chem , vol.276 , Issue.6 , pp. 4322-4329
    • Plotnikov, A.N.1    Eliseenkova, A.V.2    Ibrahimi, O.A.3
  • 77
    • 0032564440 scopus 로고    scopus 로고
    • The glycine box: A determinant of specificity for fibroblast growth factor
    • Luo Y, Lu W, Mohamedali KA et al. The glycine box: a determinant of specificity for fibroblast growth factor. Biochemistry 1998; 37(47):16506-16515
    • (1998) Biochemistry , vol.37 , Issue.47 , pp. 16506-16515
    • Luo, Y.1    Lu, W.2    Mohamedali, K.A.3
  • 78
    • 0032566048 scopus 로고    scopus 로고
    • Structure of a heparin-linked biologically active dimer of fibroblast growth factor
    • DiGabriele AD, Lax I, Chen DI et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 1998; 393(6687):812-817
    • (1998) Nature , vol.393 , Issue.6687 , pp. 812-817
    • Digabriele, A.D.1    Lax, I.2    Chen, D.I.3
  • 79
    • 0029866647 scopus 로고    scopus 로고
    • Heparin structure and interactions with basic fibroblast growth factor
    • Faham S, Hileman RE, Fromm JR et al. Heparin structure and interactions with basic fibroblast growth factor. Science 1996; 271(5252):1116-1120
    • (1996) Science , vol.271 , Issue.5252 , pp. 1116-1120
    • Faham, S.1    Hileman, R.E.2    Fromm, J.R.3
  • 80
    • 0027917893 scopus 로고
    • Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidic fibroblast growth factor
    • Zhu X, Hsu BT, Rees DC. Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidicfibroblastgrowthfactor. Structure 1993; 1(1):27-34
    • (1993) Structure , vol.1 , Issue.1 , pp. 27-34
    • Zhu, X.1    Hsu, B.T.2    Rees, D.C.3
  • 81
    • 0031693463 scopus 로고    scopus 로고
    • Epithelial/mesenchymal interactions and branching morphogenesis of the lung
    • Hogan BL, Yingling JM. Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr Opin Genet Dev 1998; 8(4):481-486
    • (1998) Curr Opin Genet Dev , vol.8 , Issue.4 , pp. 481-486
    • Hogan, B.L.1    Yingling, J.M.2
  • 82
    • 3042826804 scopus 로고    scopus 로고
    • Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors
    • Jin C, Wang F, Wu X et al. Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res 2004; 64(13):4555-4562
    • (2004) Cancer Res , vol.64 , Issue.13 , pp. 4555-4562
    • Jin, C.1    Wang, F.2    Wu, X.3
  • 83
    • 4344684497 scopus 로고    scopus 로고
    • Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions
    • Pirvola U, Zhang X, Mantela J et al. Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 2004; 273(2):350-360
    • (2004) Dev Biol , vol.273 , Issue.2 , pp. 350-360
    • Pirvola, U.1    Zhang, X.2    Mantela, J.3
  • 84
    • 0031885801 scopus 로고    scopus 로고
    • Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10is essential for limb induction
    • XuX, Weinstein M, Li C et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10is essential for limb induction. Development 1998; 125(4):753-765
    • (1998) Development , vol.125 , Issue.4 , pp. 753-765
    • Xu, X.1    Weinstein, M.2    Li, C.3
  • 85
    • 31644443482 scopus 로고    scopus 로고
    • Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development
    • Zhang X, Stappenbeck TS, White AC et al. Reciprocal epithelial- mesenchymal FGF signaling is required for cecal development. Development 2006; 133(1):173-180
    • (2006) Development , vol.133 , Issue.1 , pp. 173-180
    • Zhang, X.1    Stappenbeck, T.S.2    White, A.C.3
  • 86
    • 0031457616 scopus 로고    scopus 로고
    • Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung
    • Bellusci S, Grindley J, Emoto H et al. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997; 124(23):4867-4878
    • (1997) Development , vol.124 , Issue.23 , pp. 4867-4878
    • Bellusci, S.1    Grindley, J.2    Emoto, H.3
  • 87
    • 0036926955 scopus 로고    scopus 로고
    • Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms
    • Hoffman MP, Kidder BL, Steinberg ZL et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development2002; 129(24):5767-5778
    • (2002) Development , vol.129 , Issue.24 , pp. 5767-5778
    • Hoffman, M.P.1    Kidder, B.L.2    Steinberg, Z.L.3
  • 88
    • 0038022636 scopus 로고    scopus 로고
    • Heparan sulfate-FGF10 interactions during lung morphogenesis
    • Izvolsky KI, Shoykhet D, Yang Y et al. Heparan sulfate-FGF10 interactions during lung morphogenesis. Dev Biol 2003; 258(1):185-200
    • (2003) Dev Biol , vol.258 , Issue.1 , pp. 185-200
    • Izvolsky, K.I.1    Shoykhet, D.2    Yang, Y.3
  • 89
    • 0033917351 scopus 로고    scopus 로고
    • FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development
    • Makarenkova HP, Ito M, Govindarajan V et al. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development 2000; 127(12):2563-2572
    • (2000) Development , vol.127 , Issue.12 , pp. 2563-2572
    • Makarenkova, H.P.1    Ito, M.2    Govindarajan, V.3
  • 90
    • 0032947346 scopus 로고    scopus 로고
    • Fgf10 is essential for limb and lung formation
    • Sekine K, Ohuchi H, Fujiwara M et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999; 21(1):138-141
    • (1999) Nat Genet , vol.21 , Issue.1 , pp. 138-141
    • Sekine, K.1    Ohuchi, H.2    Fujiwara, M.3
  • 91
    • 0034925298 scopus 로고    scopus 로고
    • Early anterior/posterior patterning of the midbrain and cerebellum
    • Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001; 24:869-896
    • (2001) Annu Rev Neurosci , vol.24 , pp. 869-896
    • Liu, A.1    Joyner, A.L.2
  • 92
    • 0036682468 scopus 로고    scopus 로고
    • Functions of FGF signalling from the apical ectodermal ridge in limb development
    • Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002; 418(6897):501-508
    • (2002) Nature , vol.418 , Issue.6897 , pp. 501-508
    • Sun, X.1    Mariani, F.V.2    Martin, G.R.3
  • 93
    • 0033763097 scopus 로고    scopus 로고
    • Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23
    • Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26(3):345-348
    • (2000) Nat Genet , vol.26 , Issue.3 , pp. 345-348
  • 94
    • 77950297391 scopus 로고    scopus 로고
    • Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation
    • Goetz R, Nakada Y, Hu MC et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci USA2009
    • (2009) Proc Natl Acad Sci USA
    • Goetz, R.1    Nakada, Y.2    Hu, M.C.3
  • 95
    • 18444375871 scopus 로고    scopus 로고
    • Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo
    • Shimada T, Muto T, Urakawa I et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002; 143(8):3179-3182
    • (2002) Endocrinology , vol.143 , Issue.8 , pp. 3179-3182
    • Shimada, T.1    Muto, T.2    Urakawa, I.3
  • 96
    • 14344279878 scopus 로고    scopus 로고
    • Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia
    • Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98(11):6500-6505
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.11 , pp. 6500-6505
    • Shimada, T.1    Mizutani, S.2    Muto, T.3
  • 97
    • 0032489424 scopus 로고    scopus 로고
    • Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein
    • Shiraki-Iida T, Aizawa H, Matsumura Y et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 1998; 424(1-2):6-10
    • (1998) FEBS Lett , vol.424 , Issue.1-2 , pp. 6-10
    • Shiraki-Iida, T.1    Aizawa, H.2    Matsumura, Y.3
  • 98
    • 39149091423 scopus 로고    scopus 로고
    • FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
    • Kharitonenkov A, Dunbar JD, Bina HA et al. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol 2008; 215(1):1-7
    • (2008) J Cell Physiol , vol.215 , Issue.1 , pp. 1-7
    • Kharitonenkov, A.1    Dunbar, J.D.2    Bina, H.A.3
  • 99
    • 34848869695 scopus 로고    scopus 로고
    • Tissue-specific expression of beta Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
    • Kurosu H, Choi M, Ogawa Y et al. Tissue-specific expression ofbetaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282(37):26687-26695
    • (2007) J Biol Chem , vol.282 , Issue.37 , pp. 26687-26695
    • Kurosu, H.1    Choi, M.2    Ogawa, Y.3
  • 100
    • 34848866633 scopus 로고    scopus 로고
    • Liver-specific activities of FGF19 require Klotho beta
    • Lin BC, Wang M, Blackmore C et al. Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 2007; 282(37):27277-27284
    • (2007) J Biol Chem , vol.282 , Issue.37 , pp. 27277-27284
    • Lin, B.C.1    Wang, M.2    Blackmore, C.3
  • 101
    • 34249697012 scopus 로고    scopus 로고
    • BetaKlotho is required for metabolic activity of fibroblast growth factor 21
    • Ogawa Y, Kurosu H, Yamamoto M et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104(18):7432-7437
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.18 , pp. 7432-7437
    • Ogawa, Y.1    Kurosu, H.2    Yamamoto, M.3
  • 102
    • 41649109108 scopus 로고    scopus 로고
    • BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
    • Suzuki M, Uehara Y, Motomura-Matsuzaka K et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22(4):1006-1014
    • (2008) Mol Endocrinol , vol.22 , Issue.4 , pp. 1006-1014
    • Suzuki, M.1    Uehara, Y.2    Motomura-Matsuzaka, K.3
  • 103
    • 35748973876 scopus 로고    scopus 로고
    • Co-receptor requirements for fibroblast growth factor-19 signaling
    • Wu X, Ge H, Gupte J et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 2007; 282(40):29069-29072
    • (2007) J Biol Chem , vol.282 , Issue.40 , pp. 29069-29072
    • Wu, X.1    Ge, H.2    Gupte, J.3
  • 104
    • 33646578195 scopus 로고    scopus 로고
    • Regulation of fibroblast growth factor-23 signaling by klotho
    • Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281(10):6120-6123
    • (2006) J Biol Chem , vol.281 , Issue.10 , pp. 6120-6123
    • Kurosu, H.1    Ogawa, Y.2    Miyoshi, M.3
  • 105
    • 33845631059 scopus 로고    scopus 로고
    • Klotho converts canonical FGF receptor into a specific receptor for FGF23
    • Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120):770-774
    • (2006) Nature , vol.444 , Issue.7120 , pp. 770-774
    • Urakawa, I.1    Yamazaki, Y.2    Shimada, T.3
  • 106
    • 0030724491 scopus 로고    scopus 로고
    • Mutation of the mouse klotho gene leads to a syndrome resembling ageing
    • Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655):45-51
    • (1997) Nature , vol.390 , Issue.6655 , pp. 45-51
    • Kuro-O, M.1    Matsumura, Y.2    Aizawa, H.3
  • 107
    • 1642416884 scopus 로고    scopus 로고
    • Targeted ablation of Fgf23 demonstrates an essential physiological role ofFGF23 in phosphate and vitamin D metabolism
    • Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role ofFGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4):561-568
    • (2004) J Clin Invest , vol.113 , Issue.4 , pp. 561-568
    • Shimada, T.1    Kakitani, M.2    Yamazaki, Y.3
  • 108
    • 27844546989 scopus 로고    scopus 로고
    • Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
    • Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4):217-225
    • (2005) Cell Metab , vol.2 , Issue.4 , pp. 217-225
    • Inagaki, T.1    Choi, M.2    Moschetta, A.3
  • 109
    • 23644437321 scopus 로고    scopus 로고
    • Impaired negative feedback suppression ofbile acid synthesis in mice lacking betaKlotho
    • Ito S, Fujimori T, Furuya A et al. Impaired negative feedback suppression ofbile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115(8):2202-2208
    • (2005) J Clin Invest , vol.115 , Issue.8 , pp. 2202-2208
    • Ito, S.1    Fujimori, T.2    Furuya, A.3
  • 110
    • 0034685916 scopus 로고    scopus 로고
    • Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4
    • Yu C, Wang F, Kan M et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000; 275(20):15482-15489
    • (2000) J Biol Chem , vol.275 , Issue.20 , pp. 15482-15489
    • Yu, C.1    Wang, F.2    Kan, M.3
  • 111
    • 68049085792 scopus 로고    scopus 로고
    • FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1
    • Gattineni J, Bates C, Twombley K et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297(2):F282-291
    • (2009) Am J Physiol Renal Physiol , vol.297 , Issue.2
    • Gattineni, J.1    Bates, C.2    Twombley, K.3
  • 112
    • 0013118819 scopus 로고    scopus 로고
    • The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency
    • Bai XY, Miao D, Goltzman D et al. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003; 278(11):9843-9849
    • (2003) J Biol Chem , vol.278 , Issue.11 , pp. 9843-9849
    • Bai, X.Y.1    Miao, D.2    Goltzman, D.3
  • 113
    • 40949147446 scopus 로고    scopus 로고
    • Physiological regulation and disorders of phosphate metabolism-pivotal role of fibroblast growth factor 23
    • Fukumoto S. Physiological regulation and disorders of phosphate metabolism-pivotal role of fibroblast growth factor 23. Intern Med 2008; 47(5):337-343
    • (2008) Intern Med , vol.47 , Issue.5 , pp. 337-343
    • Fukumoto, S.1
  • 114
    • 3042634460 scopus 로고    scopus 로고
    • Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1 (I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphatehomeostasis
    • Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphatehomeostasis. Endocrinology2004; 145(7):3087-3094
    • (2004) Endocrinology , vol.145 , Issue.7 , pp. 3087-3094
    • Larsson, T.1    Marsell, R.2    Schipani, E.3
  • 115
    • 0141844575 scopus 로고    scopus 로고
    • Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX
    • Liu S, Guo R, Simpson LG et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278(39):37419-37426
    • (2003) J Biol Chem , vol.278 , Issue.39 , pp. 37419-37426
    • Liu, S.1    Guo, R.2    Simpson, L.G.3
  • 116
    • 85047691059 scopus 로고    scopus 로고
    • FGF-23 in fibrous dysplasia ofbone and its relationship to renal phosphate wasting
    • Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia ofbone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112(5):683-692
    • (2003) J Clin Invest , vol.112 , Issue.5 , pp. 683-692
    • Riminucci, M.1    Collins, M.T.2    Fedarko, N.S.3
  • 117
    • 0037462746 scopus 로고    scopus 로고
    • Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate cotransport activity and 1alpha,25-dihydroxyvitamin D3 production
    • Saito H, Kusano K, Kinosaki M et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate cotransport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4):2206-2211
    • (2003) J Biol Chem , vol.278 , Issue.4 , pp. 2206-2211
    • Saito, H.1    Kusano, K.2    Kinosaki, M.3
  • 118
    • 0042830485 scopus 로고    scopus 로고
    • Effect ofhydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter
    • Segawa H, Kawakami E, Kaneko I et al. Effect ofhydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch 2003; 446(5):585-592
    • (2003) Pflugers Arch , vol.446 , Issue.5 , pp. 585-592
    • Segawa, H.1    Kawakami, E.2    Kaneko, I.3
  • 119
    • 33751115468 scopus 로고    scopus 로고
    • Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man
    • Lundasen T, Galman C, Angelin B et al. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260(6):530-536
    • (2006) J Intern Med , vol.260 , Issue.6 , pp. 530-536
    • Lundasen, T.1    Galman, C.2    Angelin, B.3
  • 120
    • 33750698614 scopus 로고    scopus 로고
    • Identification of a hormonal basis for gallbladder filling
    • Choi M, Moschetta A, Bookout AL et al. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 12(11):1253-1255
    • (2006) Nat Med , vol.12 , Issue.11 , pp. 1253-1255
    • Choi, M.1    Moschetta, A.2    Bookout, A.L.3
  • 121
    • 0034697846 scopus 로고    scopus 로고
    • Identification ofanovel FGF, FGF-21, preferentially expressed in the liver
    • NishimuraT, Nakatake Y, Konishi M et al. Identification ofanovel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492(1):203-206
    • (2000) Biochim Biophys Acta , vol.1492 , Issue.1 , pp. 203-206
    • Nishimura, T.1    Nakatake, Y.2    Konishi, M.3
  • 122
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman MK, Pissios P, Kennedy AR et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6):426-437
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3
  • 123
    • 48349127924 scopus 로고    scopus 로고
    • The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
    • Galman C, Lundasen T, Kharitonenkov A et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008; 8(2):169-174
    • (2008) Cell Metab , vol.8 , Issue.2 , pp. 169-174
    • Galman, C.1    Lundasen, T.2    Kharitonenkov, A.3
  • 124
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor21
    • Inagaki T, Dutchak P, Zhao G et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor21. Cell Metab 2007; 5(6):415-425
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 415-425
    • Inagaki, T.1    Dutchak, P.2    Zhao, G.3
  • 125
    • 45649083309 scopus 로고    scopus 로고
    • Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting
    • Palou M, Priego T, Sanchez J et al. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch 2008; 456(5):825-836
    • (2008) Pflugers Arch , vol.456 , Issue.5 , pp. 825-836
    • Palou, M.1    Priego, T.2    Sanchez, J.3
  • 126
    • 57349098220 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 corrects obesity in mice
    • Coskun T, Bina HA, Schneider MA et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12): 6018-27
    • (2008) Endocrinology , vol.149 , Issue.12 , pp. 6018-6027
    • Coskun, T.1    Bina, H.A.2    Schneider, M.A.3
  • 127
    • 33846418834 scopus 로고    scopus 로고
    • The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
    • Kharitonenkov A, Wroblewski VJ, Koester A et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148(2):774-781
    • (2007) Endocrinology , vol.148 , Issue.2 , pp. 774-781
    • Kharitonenkov, A.1    Wroblewski, V.J.2    Koester, A.3
  • 128
    • 33750587755 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
    • Wente W, Efanov AM, Brenner M et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55(9):2470-2478
    • (2006) Diabetes , vol.55 , Issue.9 , pp. 2470-2478
    • Wente, W.1    Efanov, A.M.2    Brenner, M.3
  • 129
    • 38549092079 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases
    • Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008; 22(1):37-44
    • (2008) BioDrugs , vol.22 , Issue.1 , pp. 37-44
    • Kharitonenkov, A.1    Shanafelt, A.B.2
  • 130
    • 20244368616 scopus 로고    scopus 로고
    • Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia
    • Jonsson KB, Zahradnik R, Larsson T et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 348(17):1656-1663
    • (2003) N Engl J Med , vol.348 , Issue.17 , pp. 1656-1663
    • Jonsson, K.B.1    Zahradnik, R.2    Larsson, T.3
  • 131
    • 18744371012 scopus 로고    scopus 로고
    • Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia
    • Yamazaki Y, Okazaki R, ShibataM etal. Increased circulatory level ofbiologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 2002; 87(11):4957-4960
    • (2002) J Clin Endocrinol Metab , vol.87 , Issue.11 , pp. 4957-4960
    • Yamazaki, Y.1    Okazaki, R.2    Shibata, M.3
  • 132
    • 26244454531 scopus 로고    scopus 로고
    • A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis
    • Araya K, Fukumoto S, Backenroth R et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005; 90(10):5523-5527
    • (2005) J Clin Endocrinol Metab , vol.90 , Issue.10 , pp. 5523-5527
    • Araya, K.1    Fukumoto, S.2    Backenroth, R.3
  • 133
    • 13544270218 scopus 로고    scopus 로고
    • An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia
    • Benet-Pages A, Orlik P, Strom TM et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14(3):385-390
    • (2005) Hum Mol Genet , vol.14 , Issue.3 , pp. 385-390
    • Benet-Pages, A.1    Orlik, P.2    Strom, T.M.3
  • 134
    • 17844402245 scopus 로고    scopus 로고
    • A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis
    • Larsson T, Yu X, Davis SI et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005; 90(4):2424-2427
    • (2005) J Clin Endocrinol Metab , vol.90 , Issue.4 , pp. 2424-2427
    • Larsson, T.1    Yu, X.2    Davis, S.I.3
  • 135
    • 0021813494 scopus 로고
    • Genetic transmission of tumoral calcinosis: Autosomal dominant with variable clinical expressivity
    • Lyles KW, Burkes EJ, Ellis GJ et al. Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity. J Clin Endocrinol Metab 1985; 60(6):1093-1096
    • (1985) J Clin Endocrinol Metab , vol.60 , Issue.6 , pp. 1093-1096
    • Lyles, K.W.1    Burkes, E.J.2    Ellis, G.J.3
  • 136
    • 49249104701 scopus 로고    scopus 로고
    • Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis
    • Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359(6):584-592
    • (2008) N Engl J Med , vol.359 , Issue.6 , pp. 584-592
    • Gutierrez, O.M.1    Mannstadt, M.2    Isakova, T.3
  • 137
    • 1642494893 scopus 로고    scopus 로고
    • The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity
    • Harmer NJ, Pellegrini L, Chirgadze D et al. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry 2004; 43(3):629-640
    • (2004) Biochemistry , vol.43 , Issue.3 , pp. 629-640
    • Harmer, N.J.1    Pellegrini, L.2    Chirgadze, D.3
  • 138
    • 77949328590 scopus 로고    scopus 로고
    • FGF19 induced hepatocyte proliferation is mediated through FGFR4 activation
    • Wu X, Ge H, Lemon B et al. FGF19 induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 2009
    • (2009) J Biol Chem
    • Wu, X.1    Ge, H.2    Lemon, B.3
  • 139
    • 0029120338 scopus 로고
    • Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis
    • Zhu H, Ramnarayan K, Anchin J et al. Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis. J Biol Chem 1995; 270(37):21869-21874
    • (1995) J Biol Chem , vol.270 , Issue.37 , pp. 21869-21874
    • Zhu, H.1    Ramnarayan, K.2    Anchin, J.3
  • 140
    • 0034671719 scopus 로고    scopus 로고
    • High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base
    • Burmeister WP, Cottaz S, Rollin P et al. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 2000; 275(50):39385-39393
    • (2000) J Biol Chem , vol.275 , Issue.50 , pp. 39385-39393
    • Burmeister, W.P.1    Cottaz, S.2    Rollin, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.