-
1
-
-
0023326910
-
How to identify bathtub hazard rate
-
AARSET, M. V. (1987) How to identify bathtub hazard rate, IEEE Transactions on Reliability, 36, 106-108.
-
(1987)
IEEE Transactions on Reliability
, vol.36
, pp. 106-108
-
-
Aarset, M.V.1
-
2
-
-
75349090074
-
A discrete inverse Weibull distribution and estimation of its parameters
-
AGHABABAEI JAZI, M., LAI, C. D. and ALAMATSAZ, M. H. (2010) A discrete inverse Weibull distribution and estimation of its parameters, Statistical Methodology, 1, 121-132.
-
(2010)
Statistical Methodology
, vol.1
, pp. 121-132
-
-
Aghababaei Jazi, M.1
Lai, C.D.2
Alamatsaz, M.H.3
-
3
-
-
0003646067
-
-
Begin With, Silver Spring, Maryland
-
BARLOW, R. E. and PROSCHAN, F. (1981) Statistical Theory ofReliability and Life Testing, To Begin With, Silver Spring, Maryland.
-
(1981)
Statistical Theory OfReliability and Life Testing, to
-
-
Barlow, R.E.1
Proschan, F.2
-
4
-
-
33846351262
-
A flexible Weibull extension
-
BEBBINGTON, M., LAI, C. D. and ZITIKIS, R. (2007) A flexible Weibull extension, Reliability Engineering and Systems Safety, 92, 719-726.
-
(2007)
Reliability Engineering and Systems Safety
, vol.92
, pp. 719-726
-
-
Bebbington, M.1
Lai, C.D.2
Zitikis, R.3
-
5
-
-
37249042742
-
Estimating the turning point of a bathtub-shaped failure distribution
-
BEBBINGTON, M., LAI, C. D. and ZITIKIS, R. (2008) Estimating the turning point of a bathtub-shaped failure distribution, Journal of Statistical Planning and Inference, 138, 1157-1166.
-
(2008)
Journal of Statistical Planning and Inference
, vol.138
, pp. 1157-1166
-
-
Bebbington, M.1
Lai, C.D.2
Zitikis, R.3
-
6
-
-
70349498419
-
Modeling N and W shaped hazard rate functions without mixing distributions, Proceedings of the Institution of Mechanical Engineers, Part O
-
BEBBINGTON, M., LAI, C. D., MURTHY, D. N. P. and ZITIKIS, R. (2009) Modeling N and W shaped hazard rate functions without mixing distributions, Proceedings of the Institution of Mechanical Engineers, Part O, Journal of Risk and Reliability, 223, 59-69.
-
(2009)
Journal of Risk and Reliability
, vol.223
, pp. 59-69
-
-
Bebbington, M.1
Lai, C.D.2
Murthy, D.N.P.3
Zitikis, R.4
-
8
-
-
80052375161
-
Discrete competing risk model with application to modeling bus-motor failure data
-
JIANG, R. (2010) Discrete competing risk model with application to modeling bus-motor failure data, Reliability Engineering and System Safety, 95, 981-988.
-
(2010)
Reliability Engineering and System Safety
, vol.95
, pp. 981-988
-
-
Jiang, R.1
-
9
-
-
0029379460
-
Graphical representation of two mixed Weibull distribution
-
JIANG, R. and MURTHY, D. N. P. (1995A) Graphical representation of two mixed Weibull distribution, IEEE Transactions on Reliability, 44, 477-488.
-
(1995)
IEEE Transactions on Reliability
, vol.44
, pp. 477-488
-
-
Jiang, R.1
Murthy, D.N.P.2
-
12
-
-
61749093443
-
Discrete Burr and discrete Pareto distributions
-
KRISHNA, H. and PUNDIR, P. S. (2009) Discrete Burr and discrete Pareto distributions, Statistical Methodology, 6, 177-188.
-
(2009)
Statistical Methodology
, vol.6
, pp. 177-188
-
-
Krishna, H.1
Pundir, P.S.2
-
13
-
-
0037334196
-
A modified Weibull distribution
-
LAI, C. D., XIE, M. and MURTHY, D. N. P. (2003) A modified Weibull distribution, IEEE Transactions on Reliability, 25, 33-37.
-
(2003)
IEEE Transactions on Reliability
, vol.25
, pp. 33-37
-
-
Lai, C.D.1
Xie, M.2
Murthy, D.N.P.3
-
17
-
-
3142745321
-
Discrete Rayleigh distribution
-
ROY, D. (2004) Discrete Rayleigh distribution, IEEE Transactions on Reliability, 53, 255-260.
-
(2004)
IEEE Transactions on Reliability
, vol.53
, pp. 255-260
-
-
Roy, D.1
-
19
-
-
0036604308
-
A modified Weibull extension with bathtub-shaped failure rate function
-
XIE, M., TANG, Y. and GOH, T. N. (2002) A modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering and Systems Safety, 76, 279-285.
-
(2002)
Reliability Engineering and Systems Safety
, vol.76
, pp. 279-285
-
-
Xie, M.1
Tang, Y.2
Goh, T.N.3
|