메뉴 건너뛰기




Volumn 37, Issue , 2008, Pages 557-563

Analysis of the transferability of support vector machines for vegetation classification

Author keywords

Accuracy; Classification; High resolution; Ikonos; Mapping; Remote sensing

Indexed keywords

CLASSIFICATION (OF INFORMATION); MAPPING; SUPPORT VECTOR MACHINES; VEGETATION;

EID: 84859413527     PISSN: 16821750     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (11)
  • 1
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson, J.A., Swain, P.H. and Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geosciences and Remote Sensing, 28(4): 540-551.
    • (1990) IEEE Transactions on Geosciences and Remote Sensing , vol.28 , Issue.4 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 2
    • 84930387259 scopus 로고    scopus 로고
    • Testing some connectionist approaches for thematic mapping of rural areas
    • I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Editors) Springer-Verlag, Berlin
    • Cortez, L., Durão, F. and Ramos, V., 1997. Testing some Connectionist Approaches for Thematic mapping of Rural Areas. In: I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Editors), Neurocomputation in Remote Sensing. Springer-Verlag, Berlin, pp. 142-150.
    • (1997) Neurocomputation in Remote Sensing , pp. 142-150
    • Cortez, L.1    Durão, F.2    Ramos, V.3
  • 3
    • 0037986221 scopus 로고    scopus 로고
    • Predictive relations of tropical forest biomass from landsat TM data and their transferability between regions
    • Foody, G.M., Boyd, D.S. and Cutler, M.E., 2003. Predictive Relations of Tropical Forest Biomass from Landsat TM Data and their Transferability between Regions. Remote Sensing of Environment, 85(4): 463-474.
    • (2003) Remote Sensing of Environment , vol.85 , Issue.4 , pp. 463-474
    • Foody, G.M.1    Boyd, D.S.2    Cutler, M.E.3
  • 4
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • Foody, G.M. and Mathur, A., 2004. Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification. Remote Sensing of Environment, 93: 107-117.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 5
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural network classification
    • Foody, G.M., McCulloch, M.B. and Yates, W.B., 1995. The Effect of Training Set Size and Composition on Artificial Neural Network Classification. International Journal of Remote Sensing, 16(9): 1707-1723.
    • (1995) International Journal of Remote Sensing , vol.16 , Issue.9 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 6
    • 0011055052 scopus 로고    scopus 로고
    • Polarimetric SAR image classification using support vector Machines
    • Fukuda, S. and Hirosawa, H., 2001. Polarimetric SAR Image Classification Using Support Vector Machines. IEICE Transactions on Electronics, E84-C(12): 1939-1945.
    • (2001) IEICE Transactions on Electronics , vol.E84-C , Issue.12 , pp. 1939-1945
    • Fukuda, S.1    Hirosawa, H.2
  • 8
  • 9
    • 0035172225 scopus 로고    scopus 로고
    • Support vector Machines for broad area feature classification in remotely sensed images
    • Perkins, S., Harvey, N.R., Brumby, S.P. and Lacker, K., 2001. Support Vector Machines for Broad Area Feature Classification in Remotely Sensed Images, Proc. SPIE 4381, 9/04.
    • (2001) Proc. SPIE 4381 , vol.9 , Issue.4
    • Perkins, S.1    Harvey, N.R.2    Brumby, S.P.3    Lacker, K.4
  • 10
    • 37549017837 scopus 로고    scopus 로고
    • Support vector Machines for remote-sensing image classification
    • Barcelona, Spain
    • Roli, F. and Fumera, G., 2000. Support Vector Machines for Remote-Sensing Image Classification, EOS/SPIE Symposium on Remote Sensing, Barcelona, Spain.
    • (2000) EOS/SPIE Symposium on Remote Sensing
    • Roli, F.1    Fumera, G.2
  • 11
    • 0034758556 scopus 로고    scopus 로고
    • Monitoring large areas for forest using landsat: Generalization across space, time and landsat sensors
    • Woodcock, C.E., Macomber, S.A., Pax-Lenney, M. and Cohen, W.B., 2001. Monitoring Large Areas for Forest Using Landsat: Generalization across Space, Time and Landsat Sensors. Remote Sensing of Environment, 78: 194-203.
    • (2001) Remote Sensing of Environment , vol.78 , pp. 194-203
    • Woodcock, C.E.1    Macomber, S.A.2    Pax-Lenney, M.3    Cohen, W.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.