메뉴 건너뛰기




Volumn 6, Issue 1, 2012, Pages

A modular machine learning system for flow-level traffic classification in large networks

Author keywords

Algorithms; Measurement; Theory

Indexed keywords

APPLICATION PROTOCOLS; DATA SETS; DISPLAY PERFORMANCE; ERROR RATE; ERROR RATE REDUCTION; FLOW DATA; FLOW-LEVEL; GLOBAL ENTERPRISE NETWORKS; INTELLIGENT DATA; LARGE NETWORKS; LINEAR BINARY CLASSIFIERS; MANAGEMENT TASKS; MODULAR ARCHITECTURES; MODULAR MACHINES; NETWORK TRAFFIC; PACKET LEVEL; REAL TRAFFIC; RUNTIMES; STABILITY REQUIREMENTS; TCP FLOWS; THEORY; TRAFFIC CLASS; TRAFFIC CLASSIFICATION; TRAFFIC STATISTICS; TWO-STEP MODEL; UDP FLOWS;

EID: 84859393329     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/2133360.2133364     Document Type: Article
Times cited : (78)

References (35)
  • 6
    • 34548118248 scopus 로고    scopus 로고
    • Offline/realtime traffic classification using semi-supervised learning
    • DOI 10.1016/j.peva.2007.06.014, PII S0166531607000648
    • ERMAN, J.,MAHANTI, A., ARLITT, M. F., COHEN, I., AND WILLIAMSON, C. L. 2007. Offline/realtime traffic classification using semi-supervised learning. Perform. Eval. 64, 9-12, 1194-1213. (Pubitemid 47302132)
    • (2007) Performance Evaluation , vol.64 , Issue.9-12 , pp. 1194-1213
    • Erman, J.1    Mahanti, A.2    Arlitt, M.3    Cohen, I.4    Williamson, C.5
  • 11
    • 76749108118 scopus 로고    scopus 로고
    • Exploiting dynamicity in graph-based traffic analysis: Techniques and applications
    • ACM
    • ILIOFOTOU, M., FALOUTSOS, M., AND MITZENMACHER, M. 2009a. Exploiting dynamicity in graph-based traffic analysis: techniques and applications. In Proceedings of CoNext'09. ACM.
    • (2009) Proceedings of CoNext'09.
    • Iliofotou, M.1    Faloutsos, M.2    Mitzenmacher, M.3
  • 15
    • 70449686700 scopus 로고    scopus 로고
    • Unveiling core network-wide communication patterns through application traffic activity graph decomposition
    • JIN, Y., SHARAFUDDIN, E., AND ZHANG, Z.-L. 2009. Unveiling core network-wide communication patterns through application traffic activity graph decomposition. In Proceedings of SIGMETRICS'09. 49-60.
    • (2009) Proceedings of SIGMETRICS'09. , pp. 49-60
    • Jin, Y.1    Sharafuddin, E.2    Zhang, Z.-L.3
  • 17
    • 78650094849 scopus 로고    scopus 로고
    • Inferring applications at the network layer using collective traffic statistics (extended abstract)
    • JIN, Y., DUFFIELD, N., HAFFNER, P., SEN, S., AND ZHANG, Z.-L. 2010b. Inferring applications at the network layer using collective traffic statistics (extended abstract). In Proceedings of ACM SIGMETRICS' 10.
    • (2010) Proceedings of ACM SIGMETRICS' 10
    • Jin, Y.1    Duffield, N.2    Haffner, P.3    Sen, S.4    Zhang, Z.-L.5
  • 22
    • 14344265818 scopus 로고    scopus 로고
    • Internet traffic classification using Bayesian analysis techniques
    • MOORE, A. W. AND ZUEV, D. 2005. Internet traffic classification using Bayesian analysis techniques. In Proceedings of ACM SIGMETRICS'05.
    • (2005) Proceedings of ACM SIGMETRICS'05
    • Moore, A.W.1    Zuev, D.2
  • 25
    • 46149109490 scopus 로고    scopus 로고
    • Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world IP networks
    • IEEE
    • NGUYEN, T. AND ARMITAGE, G. 2006b. Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world IP networks. In Proceedings of the 31st Conference on Local Computer Networks. IEEE.
    • (2006) Proceedings of the 31st Conference on Local Computer Networks.
    • Nguyen, T.1    Armitage, G.2
  • 28
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • RIFKIN, R. AND KLAUTAU, A. 2004. In defense of one-vs-all classification. J. Mach. Learn. Res., 101-141.
    • (2004) J. Mach. Learn. Res. , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 29
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • SCHAPIRE, R. E. AND SINGER, Y. 2000. Boostexter: A boosting-based system for text categorization. Mach. Learn. 39, 2-3, 135-168. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 33
    • 33750283653 scopus 로고    scopus 로고
    • A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification
    • WILLIAMS, N., ZANDER, S., AND ARMITAGE, G. 2006. A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. SIGCOMM Comput. Comm. Rev. 36, 5-16.
    • (2006) SIGCOMM Comput. Comm. Rev. , vol.36 , pp. 5-16
    • Williams, N.1    Zander, S.2    Armitage, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.