메뉴 건너뛰기




Volumn 196, Issue 5, 2012, Pages 301-

Machine learning and data mining for epidemic surveillance

Author keywords

[No Author keywords available]

Indexed keywords

2009 H1N1 INFLUENZA; ACCESS TO INFORMATION; ALGORITHM; ARTICLE; COMMUNICABLE DISEASE; COMPUTER PROGRAM; DATA MINING; DISEASE ACTIVITY; DISEASE CONTROL; DISEASE SURVEILLANCE; EPIDEMIC; EPIDEMIOLOGY; HUMAN; KNOWLEDGE; MACHINE LEARNING; MASS MEDIUM; MATHEMATICAL COMPUTING; MEDICAL INFORMATION SYSTEM; ONLINE SYSTEM; PREDICTION; PROBABILITY;

EID: 84859132420     PISSN: 0025729X     EISSN: 13265377     Source Type: Journal    
DOI: 10.5694/mja12.10283     Document Type: Article
Times cited : (5)

References (4)
  • 3
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the US during the Influenza A H1N1 Pandemic
    • Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the US during the Influenza A H1N1 Pandemic. PLoS One 2011; 6: e19467.
    • (2011) PLoS One , vol.6
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 4
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data. Nature 2009; 457: 1012-1014.
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.