메뉴 건너뛰기




Volumn 13, Issue 5, 2012, Pages 2285-2292

Solvability for a coupled system of fractional differential equations at resonance

Author keywords

Boundary value problem; Fractional derivative; Fractional integral; Fredholm operator; Resonance

Indexed keywords

AT RESONANCE; COINCIDENCE DEGREE THEORY; COUPLED SYSTEMS; EXISTENCE OF SOLUTIONS; FRACTIONAL DERIVATIVE; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL INTEGRALS; FREDHOLM OPERATORS;

EID: 84859109370     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2012.01.023     Document Type: Article
Times cited : (55)

References (31)
  • 1
    • 0031571521 scopus 로고    scopus 로고
    • Solvability of m-point boundary value problems with nonlinear growth
    • W. Feng, and J.R.L. Webb Solvability of m-point boundary value problems with nonlinear growth J. Math. Anal. Appl. 212 1997 467 480
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 467-480
    • Feng, W.1    Webb, J.R.L.2
  • 2
    • 78651376420 scopus 로고    scopus 로고
    • The existence of solutions for multi-point boundary value problem at resonance
    • C. Xue, and W. Ge The existence of solutions for multi-point boundary value problem at resonance Acta Math. Sinica 48 2005 281 290
    • (2005) Acta Math. Sinica , vol.48 , pp. 281-290
    • Xue, C.1    Ge, W.2
  • 3
    • 3242697613 scopus 로고    scopus 로고
    • Existence results of a m-point boundary value problem at resonance
    • R. Ma Existence results of a m-point boundary value problem at resonance J. Math. Anal. Appl. 294 2004 147 157
    • (2004) J. Math. Anal. Appl. , vol.294 , pp. 147-157
    • Ma, R.1
  • 4
    • 0347530200 scopus 로고    scopus 로고
    • On the existence of m-point boundary value problem at resonance for higher order differential equation
    • S. Lu, and W. Ge On the existence of m-point boundary value problem at resonance for higher order differential equation J. Math. Anal. Appl. 287 2003 522 539
    • (2003) J. Math. Anal. Appl. , vol.287 , pp. 522-539
    • Lu, S.1    Ge, W.2
  • 5
    • 2342580709 scopus 로고    scopus 로고
    • Solvability of nonlocal boundary value problems for ordinary differential equations of higher order
    • Y. Liu, and W. Ge Solvability of nonlocal boundary value problems for ordinary differential equations of higher order Nonlinear Anal. 57 2004 435 458
    • (2004) Nonlinear Anal. , vol.57 , pp. 435-458
    • Liu, Y.1    Ge, W.2
  • 6
    • 12544251999 scopus 로고    scopus 로고
    • Some higher-order multi-point boundary value problem at resonance
    • Z. Du, X. Lin, and W. Ge Some higher-order multi-point boundary value problem at resonance J. Comput. Appl. Math. 177 2005 55 65
    • (2005) J. Comput. Appl. Math. , vol.177 , pp. 55-65
    • Du, Z.1    Lin, X.2    Ge, W.3
  • 7
    • 0035402718 scopus 로고    scopus 로고
    • On a nonlocal boundary value problem at resonance
    • G.L. Karakostas, and P.Ch. Tsamatos On a nonlocal boundary value problem at resonance J. Math. Anal. Appl. 259 2001 209 218
    • (2001) J. Math. Anal. Appl. , vol.259 , pp. 209-218
    • Karakostas, G.L.1    Tsamatos, P.Ch.2
  • 8
    • 0035894674 scopus 로고    scopus 로고
    • Solvability of a multi-point boundary value problem at resonance
    • B. Prezeradzki, and R. Stanczy Solvability of a multi-point boundary value problem at resonance J. Math. Anal. Appl. 264 2001 253 261
    • (2001) J. Math. Anal. Appl. , vol.264 , pp. 253-261
    • Prezeradzki, B.1    Stanczy, R.2
  • 9
    • 0037443323 scopus 로고    scopus 로고
    • Solvability of multi-point boundary value problem at resonance (II)
    • B. Liu Solvability of multi-point boundary value problem at resonance (II) Appl. Math. Comput. 136 2003 353 377
    • (2003) Appl. Math. Comput. , vol.136 , pp. 353-377
    • Liu, B.1
  • 10
    • 0000830834 scopus 로고
    • Solvability of multi-point boundary value problem at resonance
    • C.P. Gupta Solvability of multi-point boundary value problem at resonance Results Math. 28 1995 270 276
    • (1995) Results Math. , vol.28 , pp. 270-276
    • Gupta, C.P.1
  • 11
    • 34548655228 scopus 로고    scopus 로고
    • Solvability for second-order three-point boundary value problems at resonance on a half-line
    • H. Lian, H. Pang, and W. Ge Solvability for second-order three-point boundary value problems at resonance on a half-line J. Math. Anal. Appl. 337 2008 1171 1181
    • (2008) J. Math. Anal. Appl. , vol.337 , pp. 1171-1181
    • Lian, H.1    Pang, H.2    Ge, W.3
  • 12
    • 58149218134 scopus 로고    scopus 로고
    • Existence result of second-order differential equations with integral boundary conditions at resonance
    • X. Zhang, M. Feng, and W. Ge Existence result of second-order differential equations with integral boundary conditions at resonance J. Math. Anal. Appl. 353 2009 311 319
    • (2009) J. Math. Anal. Appl. , vol.353 , pp. 311-319
    • Zhang, X.1    Feng, M.2    Ge, W.3
  • 13
    • 39749151592 scopus 로고    scopus 로고
    • Multi-point boundary value problems on an unbounded domain at resonance
    • N. Kosmatov Multi-point boundary value problems on an unbounded domain at resonance Nonlinear Anal. 68 2008 2158 2171
    • (2008) Nonlinear Anal. , vol.68 , pp. 2158-2171
    • Kosmatov, N.1
  • 14
    • 58549106613 scopus 로고    scopus 로고
    • A new continuation theorem for the existence of solutions to P-Lpalacian BVP at resonance
    • B. Du, and X. Hu A new continuation theorem for the existence of solutions to P-Lpalacian BVP at resonance Appl. Math. Comput. 208 2009 172 176
    • (2009) Appl. Math. Comput. , vol.208 , pp. 172-176
    • Du, B.1    Hu, X.2
  • 17
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R.P. Agarwal, D. O'Regan, and S. Stanek Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations J. Math. Anal. Appl. 371 2010 57 68
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stanek, S.3
  • 18
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, and S.K. Ntouyas Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. 71 2009 2391 2396
    • (2009) Nonlinear Anal. , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 19
    • 71649090846 scopus 로고    scopus 로고
    • The positive properties of the Green function for Dirichlet-type of nonlinear fractional differential equations and its application
    • D. Jiang, and C. Yuan The positive properties of the Green function for Dirichlet-type of nonlinear fractional differential equations and its application Nonlinear Anal. 72 2010 710 719
    • (2010) Nonlinear Anal. , vol.72 , pp. 710-719
    • Jiang, D.1    Yuan, C.2
  • 20
    • 45049084850 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala General uniqueness and monotone iterative technique for fractional differential equations Appl. Math. Lett. 21 2008 828 834
    • (2008) Appl. Math. Lett. , vol.21 , pp. 828-834
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 21
    • 70350714213 scopus 로고    scopus 로고
    • Existence of positive solution for singular fractional differential equation
    • Z. Bai, and T. Qiu Existence of positive solution for singular fractional differential equation Appl. Math. Comput. 215 2009 2761 2767
    • (2009) Appl. Math. Comput. , vol.215 , pp. 2761-2767
    • Bai, Z.1    Qiu, T.2
  • 22
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • S. Zhang Positive solutions for boundary-value problems of nonlinear fractional differential equations Elec. J. Diff. Equa. 2006 36 2006 1 12
    • (2006) Elec. J. Diff. Equa. , vol.2006 , Issue.36 , pp. 1-12
    • Zhang, S.1
  • 23
    • 33748963091 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method
    • H. Jafari, and V.D. Gejji Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method Appl. Math. Comput. 180 2006 700 706
    • (2006) Appl. Math. Comput. , vol.180 , pp. 700-706
    • Jafari, H.1    Gejji, V.D.2
  • 24
    • 38149118737 scopus 로고    scopus 로고
    • Positive solutions of a boundary value problem for a nonlinear fractional differential equation
    • E.R. Kaufmann, and E. Mboumi Positive solutions of a boundary value problem for a nonlinear fractional differential equation Electron. J. Qual. Theory Differ. Equ. 3 2008 1 11
    • (2008) Electron. J. Qual. Theory Differ. Equ. , Issue.3 , pp. 1-11
    • Kaufmann, E.R.1    Mboumi, E.2
  • 25
    • 68349091496 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equation
    • S. Liang, and J. Zhang Positive solutions for boundary value problems of nonlinear fractional differential equation Nonlinear Anal. 71 2009 5545 5550
    • (2009) Nonlinear Anal. , vol.71 , pp. 5545-5550
    • Liang, S.1    Zhang, J.2
  • 26
    • 67651094005 scopus 로고    scopus 로고
    • Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
    • X. Xu, D. Jiang, and C. Yuan Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation Nonlinear Anal. 71 2009 4676 4688
    • (2009) Nonlinear Anal. , vol.71 , pp. 4676-4688
    • Xu, X.1    Jiang, D.2    Yuan, C.3
  • 27
    • 64249167013 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system
    • Article ID
    • A. Yang, and W. Ge Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system Bound. Value Probl. 2008 437 453 Article ID
    • (2008) Bound. Value Probl. , pp. 437-453
    • Yang, A.1    Ge, W.2
  • 28
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • X. Su Boundary value problem for a coupled system of nonlinear fractional differential equations Appl. Math. Lett. 22 2009 64 69
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 29
    • 78649666829 scopus 로고    scopus 로고
    • A boundary value problem of fractional order at resonance
    • N. Kosmatov A boundary value problem of fractional order at resonance Elec. J. Diff. Equa. 2010 135 2010 1 10
    • (2010) Elec. J. Diff. Equa. , vol.2010 , Issue.135 , pp. 1-10
    • Kosmatov, N.1
  • 30
    • 78651353033 scopus 로고    scopus 로고
    • The existence of solutions for boundary value problems of fractional differential equations at resonance
    • Weihua Jiang The existence of solutions for boundary value problems of fractional differential equations at resonance Nonlinear Anal. 74 2011 1987 1994
    • (2011) Nonlinear Anal. , vol.74 , pp. 1987-1994
    • Jiang, W.1
  • 31
    • 0003295303 scopus 로고
    • Topological degree methods in nonlinear boundary value problems
    • American Mathematical Society Providence, RI
    • J. Mawhin Topological degree methods in nonlinear boundary value problems NSFCBMS Regional Conference Series in Mathematics 1979 American Mathematical Society Providence, RI
    • (1979) NSFCBMS Regional Conference Series in Mathematics
    • Mawhin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.