메뉴 건너뛰기




Volumn 2, Issue , 2011, Pages 508-513

They can help: Using crowdsourcing to improve the evaluation of grammatical error detection systems

Author keywords

[No Author keywords available]

Indexed keywords

CROWDSOURCING; DETECTION SYSTEM; EVALUATION METHODOLOGIES; GRAMMATICAL ERRORS; NON-NATIVE SPEAKERS; PERFORMANCE OF SYSTEMS;

EID: 84859092340     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (24)
  • 2
    • 80053402398 scopus 로고    scopus 로고
    • Fast, cheap, and creative: Evaluating translation quality using amazon's mechanical turk
    • Chris Callison-Burch. 2009. Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon's Mechanical Turk. In Proceedings of EMNLP, pages 286-295.
    • (2009) Proceedings of EMNLP , pp. 286-295
    • Callison-Burch, C.1
  • 4
    • 84858115468 scopus 로고    scopus 로고
    • Helping our own: Text massaging for computational linguistics as a new shared task
    • Robert Dale and Adam Kilgarriff. 2010. Helping Our Own: Text Massaging for Computational Linguistics as a New Shared Task. In Proceedings of INLG.
    • (2010) Proceedings of INLG
    • Dale, R.1    Kilgarriff, A.2
  • 6
    • 80053423612 scopus 로고    scopus 로고
    • A classifier-based approach to preposition and determiner error correction in L2 english
    • Rachele De Felice and Stephen Pulman. 2008. A Classifier-Based Approach to Preposition and Determiner Error Correction in L2 English. In Proceedings of COLING, pages 169-176.
    • (2008) Proceedings of COLING , pp. 169-176
    • De Felice, R.1    Pulman, S.2
  • 8
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Yoav Freund and Robert E. Schapire. 1999. Large Margin Classification Using the Perceptron Algorithm. Machine Learning, 37(3):277-296. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 80053278258 scopus 로고    scopus 로고
    • Using mostly native data to correct errors in learners' writing
    • Michael Gamon. 2010. Using Mostly Native Data to Correct Errors in Learners' Writing. In Proceedings of NAACL, pages 163-171.
    • (2010) Proceedings of NAACL , pp. 163-171
    • Gamon, M.1
  • 11
    • 79960643793 scopus 로고    scopus 로고
    • The hegemony of english as a global language: Reclaiming local knowledge and culture in China
    • Y. Guo and Gulbahar Beckett. 2007. The Hegemony of English as a Global Language: Reclaiming Local Knowledge and Culture in China. Convergence: International Journal of Adult Education, 1.
    • (2007) Convergence: International Journal of Adult Education , vol.1
    • Guo, Y.1    Beckett, G.2
  • 15
    • 79958275518 scopus 로고    scopus 로고
    • Cheap, fast and good enough: Automatic speech recognition with non-expert transcription
    • Scott Novotney and Chris Callison-Burch. 2010. Cheap, Fast and Good Enough: Automatic Speech Recognition with Non-Expert Transcription. In Proceedings of NAACL, pages 207-215.
    • (2010) Proceedings of NAACL , pp. 207-215
    • Novotney, S.1    Callison-Burch, C.2
  • 18
    • 80053224523 scopus 로고    scopus 로고
    • Generating confusion sets for context-sensitive error correction
    • Alla Rozovskaya and D. Roth. 2010b. Generating Confusion Sets for Context-Sensitive Error Correction. In Proceedings of EMNLP.
    • (2010) Proceedings of EMNLP
    • Rozovskaya, A.1    Roth, D.2
  • 20
    • 78651280222 scopus 로고    scopus 로고
    • The ups and downs of preposition error detection in ESL writing
    • Joel Tetreault and Martin Chodorow. 2008. The Ups and Downs of Preposition Error Detection in ESL Writing. In Proceedings of COLING, pages 865-872.
    • (2008) Proceedings of COLING , pp. 865-872
    • Tetreault, J.1    Chodorow, M.2
  • 24
    • 84858436162 scopus 로고    scopus 로고
    • Predicting human-targeted translation edit rate via untrained human annotators
    • Omar F. Zaidan and Chris Callison-Burch. 2010. Predicting Human-Targeted Translation Edit Rate via Untrained Human Annotators. In Proceedings of NAACL, pages 369-372.
    • (2010) Proceedings of NAACL , pp. 369-372
    • Zaidan, O.F.1    Callison-Burch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.