메뉴 건너뛰기




Volumn , Issue , 2010, Pages 269-274

Hierarchical sequential learning for extracting opinions and their attributes

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL RANDOM FIELD; HIERARCHICAL STRUCTURES; KEY ATTRIBUTES; OPINION ANALYSIS; PARAMETER SHARING; SEQUENTIAL LEARNING;

EID: 84859074617     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (98)

References (19)
  • 2
    • 84880904134 scopus 로고    scopus 로고
    • Identifying expressions of opinion in context
    • E. Breck, Y. Choi and C. Cardie. 2007. Identifying Expressions of Opinion in Context. In IJCAI.
    • (2007) IJCAI
    • Breck, E.1    Choi, Y.2    Cardie, C.3
  • 3
    • 18744367558 scopus 로고    scopus 로고
    • Hierarchical document categorization with support vector machines
    • L. Cai and T. Hofmann. 2004. Hierarchical document categorization with support vector machines. In CIKM.
    • (2004) CIKM
    • Cai, L.1    Hofmann, T.2
  • 4
    • 80053377187 scopus 로고    scopus 로고
    • Learning with compositional semantics as structural inference for subsentential sentiment analysis
    • Y. Choi and C. Cardie. 2008. Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis. In EMNLP.
    • (2008) EMNLP
    • Choi, Y.1    Cardie, C.2
  • 5
    • 0037554039 scopus 로고    scopus 로고
    • GATE: A framework and graphical development environment for robust NLP tools and applications
    • H. Cunningham, D. Maynard, K. Bontcheva and V. Tablan. 2002. GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In ACL.
    • (2002) ACL
    • Cunningham, H.1    Maynard, D.2    Bontcheva, K.3    Tablan, V.4
  • 6
    • 80053379378 scopus 로고    scopus 로고
    • Solving the problem of cascading errors: Approximate Bayesian inference for linguistic annotation pipelines
    • J. R. Finkel, C. D. Manning and A. Y. Ng. 2006. Solving the Problem of Cascading Errors: Approximate Bayesian Inference for Linguistic Annotation Pipelines. In EMNLP.
    • (2006) EMNLP
    • Finkel, J.R.1    Manning, C.D.2    Ng, A.Y.3
  • 7
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • M. Hu and B. Liu. 2004. Mining and Summarizing Customer Reviews. In KDD.
    • (2004) KDD
    • Hu, M.1    Liu, B.2
  • 8
    • 85107227165 scopus 로고    scopus 로고
    • Determining the sentiment of opinions
    • S. Kim and E. Hovy. 2004. Determining the sentiment of opinions. In COLING.
    • (2004) COLING
    • Kim, S.1    Hovy, E.2
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilisticmodels for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum and F. Pereira. 2001. Conditional Random Fields: ProbabilisticModels for Segmenting and Labeling Sequence Data. In ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 84976702763 scopus 로고
    • WordNet: A lexical database for English
    • G. A. Miller. 1995. WordNet: a lexical database for English. In Communications of the ACM, 38(11).
    • (1995) Communications of the ACM , vol.38 , Issue.11
    • Miller, G.A.1
  • 13
    • 80053270803 scopus 로고    scopus 로고
    • Extracting product features and opinions from reviews
    • Ana-Maria Popescu and O. Etzioni. 2005. Extracting Product Features and Opinions from Reviews. In HLT-EMNLP.
    • (2005) HLT-EMNLP
    • Popescu, A.-M.1    Etzioni, O.2
  • 15
    • 33644632271 scopus 로고    scopus 로고
    • Annotating expressions of opinions and emotions in language
    • J. Wiebe and T. Wilson and C. Cardie 2005. Annotating Expressions of Opinions and Emotions in Language. In Language Resources and Evaluation, volume 39, issue 2-3.
    • (2005) Language Resources and Evaluation , vol.39 , Issue.2-3
    • Wiebe, J.1    Wilson, T.2    Cardie, C.3
  • 16
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • T.Wilson, J.Wiebe and P. Hoffmann. 2005. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In HLT-EMNLP.
    • (2005) HLT-EMNLP
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 17
    • 33646867863 scopus 로고    scopus 로고
    • Recognizing strong and weak opinion clauses
    • T. Wilson, J. Wiebe and R. Hwa. 2006. Recognizing strong and weak opinion clauses. In Computational Intelligence. 22 (2): 73-99.
    • (2006) Computational Intelligence , vol.22 , Issue.2 , pp. 73-99
    • Wilson, T.1    Wiebe, J.2    Hwa, R.3
  • 18
    • 70349529656 scopus 로고    scopus 로고
    • Recognizing Contextual Polarity: An exploration of features for phrase-level sentiment analysis
    • T.Wilson, J.Wiebe and P. Hoffmann. 2009. Recognizing Contextual Polarity: an exploration of features for phrase-level sentiment analysis. Computational Linguistics 35(3).
    • (2009) Computational Linguistics , vol.35 , Issue.3
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 19
    • 74849096097 scopus 로고    scopus 로고
    • Adding redundant features for CRFs-based sentence sentiment classification
    • J. Zhao, K. Liu and G. Wang. 2008. Adding Redundant Features for CRFs-based Sentence Sentiment Classification. In EMNLP.
    • (2008) EMNLP
    • Zhao, J.1    Liu, K.2    Wang, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.